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Film rupture in the diffuse interface model coupled to hydrodynamics
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The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding
a single evolution equation for the film thickness. This equation incorporates an additional pressure term—the
disjoining pressure—accounting for the molecular forces. Recently a disjoining pressure was derived coupling
hydrodynamics to the diffuse interface model@L. M. Pismen and Y. Pomeau, Phys. Rev. E62, 2480~2000!#.
Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we
examine the thickness ranges for linear instability and metastability for flat films, the families of stationary
periodic and localized solutions, and their linear stability. The results are compared to simulations of the
nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists
a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures.
In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat
film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other
forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.
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I. INTRODUCTION

The stability of thin liquid films on solid substrates is
interest in applications such as coating or drying proces
Destabilizing influences leading to film rupture can ar
from gradients in the surface tension caused by a sp
variation of temperature or surfactant concentration fields
evaporation, or by molecular forces. The latter forces
especially important for very thin films with thickness
smaller than 100 nm. The rupture process due to molec
forces, and hence dewetting, is studied either to unders
how to keep thin films stable@1# or how to produce struc
tured thin films in a controlled manner@2#.

Dewetting proceeds by the formation of holes in unsta
films. Subsequently the lateral expansion of the holes res
in the formation of a polygonal network of liquid rims o
ensembles of liquid drops@3,4#. Experimental and theoretica
investigations focus on all aspects of the process: the in
rupture of the film@5,1,6#, the growth process of single hole
@7,8#, the evolution and the final state of the overall patte
@4,2,9,10#, and instabilities during hole growth@11#.

For the film rupture the two widely discussed mechanis
are surface instability and heterogeneous nucleation du
defects. They occur in the range of metastable and line
unstable film thicknesses, respectively@1,4,9,12–15,6#. Dif-
ferent procedures have been proposed to distinguish
mechanisms through an analysis of the final hole pattern.
the one hand, the change of hole density with film thickn
1063-651X/2001/64~3!/031602~14!/$20.00 64 0316
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is compared with the dependence of wavelength on thickn
taken from the linear stability analysis@4,16#. On the other
hand, ordered and disordered arrangements of holes
found to be caused by instability and nucleation, respectiv
@12,9,14#.

To describe the dewetting process one takes advantag
the disparity of the length scales, film thickness, and late
changes in the film profile, that allows the use of the lon
wave or lubrication approximation of Stokes equations@17#.
The resulting nonlinear evolution equation for the film thic
ness is formally similar to the Cahn-Hillard equation th
describes the spinodal decomposition of a binary mixt
@18#. Therefore, the rupture due to the surface instability
also called ‘‘spinodal dewetting’’@19#.

The possibly destabilizing molecular forces are includ
in the thickness evolution equation as an additional press
term, the so-called disjoining pressure first introduced
Derjaguin and co-workers@20,21#. Depending on the particu
lar problem treated, the disjoining pressure may incorpor
van der Waals, electrostatic, and structural interaction te
@22–25#. Every term of the disjoining pressure acts on
specific thickness scale, and can be stabilizing or destab
ing. The large number of possible combinations can
roughly ordered by some of the global features of the dep
dence of the disjoining pressure on film thickness, such
the behavior for small and large film thicknesses, and nu
ber of maxima or minima. Standard choices normally inclu
short- and long-range components that can be destabili
©2001 The American Physical Society02-1
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or stabilizing. Their combination gives four types of disjoi
ing pressure@26,27# that have been used to study the tw
and three-dimensional evolution of unstable films@28–32#. A
common shortcoming of all the used pressures known to
authors are the singularities arising when the film thickn
goes to zero.

Recently, Pismen and Pomeau combined the long-w
approximation for thin films with a diffuse interface descri
tion for the surface of the liquid, to derive a disjoining pre
sure that does not contain divergencies for vanishing fi
thickness@33#. First they discussed the vertical density pr
file for a liquid in a flat horizontal layer of fluid incorporatin
a smooth but nevertheless relatively sharp density trans
between fluid and gas, and the density variation close to
solid substrate due to molecular interactions that enter
the calculation via the boundary condition for the fluid de
sity at the substrate. Then they combined the obtained d
sity profile with the Stokes equation in the long-wave a
proximation to account for dynamic situations. The arisi
film thickness equation has the typical form of a thin fil
equation with disjoining pressure@17#, where the disjoining
pressure now results from diffuse interface theory. We
the film thickness equation from Ref.@33# to perform a de-
tailed analysis of the competing mechanisms leading to
rupture of a thin liquid film. By ‘‘rupture’’ here we mean no
true rupture leading to patches of dry substrate but the
mation of holes with a very thin remaining film, as in
precursor film model@34#. On the one hand, the analys
aims at generic results for film rupture on a horizontal s
strate under the influence of destabilizing short-range
stabilizing long-range interactions also applicable to ot
disjoining pressures. On the other hand, it also serves
key study for later analyses of sliding drops on an inclin
plane or with surface tension gradient forces.

We begin with a thin film evolution equation, discuss t
scaling used, introduce a Lyapunov function~free energy po-
tential!, and proceed with the derivation of the stationa
equation ~Sec. II!. In the following we discuss stability
metastability, and linear instability for a flat or homogeneo
film ~Sec. III!, and calculate the families of stationary inh
mogeneous~periodic and localized! solutions in the different
parameter ranges~Sec. IV!. For particular parameter value
analytical solutions are given. The linear stability analysis
these solutions~Sec. V! allows us to formulate a hypothes
on their significance in the evolution process that is chec
by direct integration of the time evolution equation for li
early unstable thin films~Sec. VI!. We make a distinction
between two thickness subranges within the linearly unsta
thickness range, where a qualitatively different behavio
predicted during structure formation:~A! a nucleation-
dominated subrange, where initial small-scale finite dis
bances determine the final structure, hence overcoming
fastest flat film mode; and~B! and instability-dominated sub
range, where the fastest flat film mode overcomes the fi
perturbations. Finally, in Sec. VII we discuss the applicab
ity of our main results to thin liquid films subject to variou
disjoining pressures formally similar to the one studied he
as, for example, the combination of a destabilizing sho
range polar and a stabilizing long-range apolar interaction
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used in Refs.@11,26,28,30,31,35,36#, and to the spinodal de
composition of binary mixtures by clarifying in which wa
we have extended earlier results on solution types and t
stability @37–40#.

II. FILM THICKNESS EVOLUTION EQUATION

Using a diffuse interface model and the long-wave or
brication approximation the film thickness evolution equ
tion for a thin liquid film on a solid substrate was derived
Ref. @33#. For a two-dimensional geometry, as sketched
Fig. 1, it writes

] th52]x$Q~h!]x@g]xxh2]hf ~h,a!#%, ~1!

where h denotes the film thickness, andQ(h)5h3/3h the
mobility factor due to the assumed Poiseuille flow.g]xxh
represents the Laplace or curvature pressure, and

]hf ~h,a!5kM ~h,a!1rgh5
2k

a
e2h/ l S 12

1

a
e2h/ l D1rgh

~2!

is an additional pressure term corresponding to the free
ergy f (h,a). g is the gravitational acceleration, andr, g, and
h are the respective density, surface tension, and viscosit
the liquid.P(h)52kM (h,a) is the disjoining pressure aris
ing from diffuse interface theory, the constantk has the di-
mension of a spreading coefficient per length,a is a small
dimensionless positive parameter describing the wett
properties in the regime of partial wetting andl is the length
scale of the diffuse interface@33#. The functional form of
M (h,a) ~scaled as explained below! can be seen in Fig. 2
rgh is the hydrostatic pressure. Subscriptst, x, andh denote
the corresponding partial derivatives.

A. Scaling

To introduce dimensionless quantities~with tilde!, suit-
able new scales are used:

FIG. 1. Sketch of the two-dimensional geometry.
2-2
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t5
3hg

k2l
t̃ ,

~3!
h5 l h̃,

x5Alg

k
x̃.

The ratiok l /g is O(a2) @33#, i.e., the scale in thex direction
is l /a. Expecting no confusion from the reader after dropp
the tildes, we find

] th52]x$h
3]x@]xxh2M ~h,a!2Gh#% ~4!

where

G5
lrg

k
~5!

gives the ratio between gravitation and molecular inter
tions with values always taken to be positive. We will s
that even ifG is very small we cannot drop it, because
crucially influences the behavior of the solution of the s
tem; the problem is singular atG50. The form ofM (h,a)
allows us to transfer the constanta into the mobility factorQ
by the transformationh* 5h1 ln a. After dropping the star,
and once more expecting no confusion in the reader, we

M ~h!52e2h~12e2h!, ~6!

while the evolution equation~1! becomes

] th52]x$~h2 ln a!3]x@]xxh2]hf ~h!#%, ~7!

with

]hf ~h!5M ~h!1Gh. ~8!

From now on we will use the general form]hf (h), introduc-
ing the example treated here only in the final stage of ca

FIG. 2. Fixed points of the dynamical system represented
crossings of the curvesM (h)2M (h0) ~solid line! and 2G(h
2h0) ~broken lines! at h051/4 and differentG.
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lations. In this way all derivations can be used easily wh
ever the particular disjoining pressure us
@26,28,30,31,35,36,41#.

B. Lyapunov functional

At different stages of our investigation we need a va
measure for the energy that can be assigned to a given
thickness profile,h(x,t). For this purpose, following, for ex-
ample, Refs.@39,42,19#, we introduce a semidefinite positiv
functional

F~h!5E F1

2
~]xh!21 f ~h!2C1~h2h̄!Gdx, ~9!

which we shall show is a Lyapunov functional.h̄ is the mean
film thickness, and hereC1 is the Lagrange multiplier corre
sponding to material conservation needed when compa
different stationary solutions for the same liquid volume.
show thatF(h) is a Lyapunov functional, we have to prov
that its functional derivative is semidefinite negative. W
write the evolution equation~7! as

] th5]xS Q~h!]x

dF

dh D , ~10!

with Q(h)5(h2 ln a)3, andd denoting functional variation.
Multiplying Eq. ~10! by dF/dh, and integrating with respec
to x, gives, after integration by parts, the total time derivati
of F:

dF

dt
52E Q~h!S ]x

dF

dh D 2

dx. ~11!

Studying only situations with positive physical film thick
ness,h2 ln a, the derivativedF/dt is always negative, and
so F is a good choice for a Lyapunov or energy function
We will further call it ‘‘energy,’’ for short, and use it to
compare stationary solutions to determine their absolute
bility and measure their time evolution in the numerical i
tegration of Eq.~7!.

C. Stationary equation

To study stationary and especially homogeneous or
film solutions, we set] th50 and integrate Eq.~7!, yielding

05]xxxh2„]hhf ~h!…]xh1
C0

Q~h!
. ~12!

We are looking for bounded solutions of three types:~a!
periodic solutions,~b! localized solutions, and~c! flat film
solutions. For~a! the reflection symmetry with respect to th
extrema of the solutions impliesC050. The same follows
for ~b! and ~c!, because there allx derivatives vanish at in-
finity. A second integration yields

05]xxh~x!2]hf ~h!1C1 . ~13!

The constantC1 accounts for external conditions like chem
cal potential, vapor pressure, or mass conservation. Reg

s

2-3
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THIELE, VELARDE, NEUFFER, AND POMEAU PHYSICAL REVIEW E64 031602
ing the latter, the choiceC15]hf (h0)5M (h0)1Gh0 en-
sures a flat film solution of Eq.~13!, h(x)5h0. Using the
sameC1(h0) for localized solutions,h0 is the thickness a
infinity, h` . For periodic solutions,h0 is the thickness at the
inflection point of the respective profile. Its difference fro
the thickness at the maximum or minimum of the period i
measure of the curvature at the maximum and minimu
respectively. Note that Eq.~13! also follows from the mini-
mization of the energy functional@Eq. ~9!#, as expected
Later we will compute periodic solutions of Eq.~13!, and
parametrize them by their mean film thickness,h̄
5(1/p)*0

ph(x)dx, and period,p. Before embarking on this
in Sec. III we study the flat film solutions of Eq.~13! and
their stability.

III. HOMOGENEOUS OR UNIFORM SOLUTIONS

A chosenh0 is by construction the thickness of a flat film
solution or fixed point of Eq.~13!. Due to the nonlinear
relationC1(h0), given the constantC1 by the choice ofh0,
other flat film solutionsh(x)5hf are given by

]hf ~hf !5]hf ~h0!. ~14!

Here they are represented by the crossing points of the c
M (h)2M (h0) with the straight line2G(h2h0), as shown
in Fig. 2. ForG.0 one finds one or three fixed points d
pending on the value ofG and h0. The bifurcation points
between the two regimes are characterized by]hhf (h0)
5]hM (h)1G50 and Eq.~14!. For (Gc51/4,hc5 ln 4) we
find a critical point characterized by Eq.~14! and ]hhf (hc)
5]hhhf (hc)50. If G.1/4, there exists only the fixed poin
h0. Linearizing Eq.~13! around each one of the fixed point
we find that for ]hhf (hf).0 they are saddles and fo
]hhf (hf),0 centers. This corresponds to the results of
linear stability analysis for flat films as will be shown belo
To illustrate the existence of different flat film solutions, w
plot in Fig. 3 bifurcation diagrams for~a! fixed h0 and ~b!
fixed G, respectively.

A. Linear stability of flat film solutions

To assess the linear stability of the flat filmsh(x)5h0 we
use a Fourier mode decompositionh(x)5h01e exp(bt

FIG. 3. Bifurcation diagram for~a! fixed h051/4, and~b! fixed
G50.04 showing flat film solutions according to the valuesG and
h0, respectively. Solid and dashed lines correspond, respective
linearly stable~saddle! and linearly unstable~center! ranges.
03160
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1ikx), where b provides the linear instability growth rat
andk accounts for the horizontal scale of disturbances. L
earizing the full time dependent equation~7! with this ansatz
yields

b52~h02 ln a!3k2@k21]hhf ~h0!#. ~15!

The flat film is unstable forb.0, i.e., for

]hhf ~h0!522e2h0~122e2h0!1G,0. ~16!

Accordingly, there is a range of linearly unstable thicknes
at intermediate values,

hi
d,h0,hi

u , ~17!

with

hi
u/d52 lnF1

2 S 1

2
7A1

4
2GD G . ~18!

For G!1 one hashi
d'2 ln(G/2) and hi

u' ln 21G. In the
limit G→0 there is no upper limit for the instability range
as even very thick films are unstable, and hence we can
setG to zero. As derived in Appendix A 2 close to the critic
point (Gc51/4,hc5 ln 4), Eq. ~18! simplifies to hi

u/d5hc

62AGc2G1O(Gc2G).
The critical ~smallest unstable! wavelength for a given

film thicknessh0 is

lc5
2p

A2]hhf ~h0!
. ~19!

The thickness profileh(x)5h01e exp@ikc(h0)x# with kc(h0)
5A2]hhf (h0) is neutrally stable (b50), and represents a
small amplitude stationary solution of Eq.~13!.

The fastest growing mode has the wavelengthlm

5A2lc whose growth rate is

bm5 1
4 ~h02 ln a!3@]hhf ~h0!#2. ~20!

The linear stability results are indeed related to the fix
points or uniform solutions discussed in Sec. III.

B. Absolute stability of flat film solutions

A linearly stable flat film may not be absolutely stable, f
it can be unstable to finite amplitude disturbances. This c
responds to subcritical instability or metastability. Only
for a given film thickness, there is no thickness profile w
smaller energy is the flat film absolutely stable. To clar
this issue further, we assume an infinitely long film of thic
nessh0. Only a small part of finite lengths has thicknessh,
to ensure that the mean film thickness ish0. The width of the
finite transition region between the two thickness levels
small compared tos, so its energy can be neglected. Now w
can calculate the energy per unit length of the changed
g, using the Lyapunov functional@Eq. ~9!#

g~h!5 f ~h!2C1~h0!h1C1~h0!h0 , ~21!

to
2-4
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with

f ~h!52e2h~22e2h!1Gh2/2. ~22!

The functiong(h)2C1(h0)h0 is plotted in Fig. 4 for differ-
ent values of the mean film thicknessh0, and fixedG50.1.
The two minima ofg(h) represent the lower and upper lin
early stable thicknesses discussed in Sec. III A. Howe
only the deeper minimum corresponds to an absolutely st
film thickness, and the other is a metastable state. The m
mum represents the linearly unstable thicknesses as in
III A. For 0,G,Gc51/4 the metastable thickness range
limited by the value ofh0 where the two minima have th
same depth. There exist upper and lower limits, that we
notehm

u andhm
d , respectively. They are characterized by

]hf uh
m
u 5]hf uh

m
d ,

~23!
g~hm

u !5g~hm
d !.

Note that the solutions of Eqs.~23! also correspond to the
conditions determining the two final equilibrium film thick
nesses obtained in Refs.@11,19,43# by a Maxwell construc-
tion. For low enough, albeit not vanishingG!1, they can be
determined analytically, starting from the assumptionshm

u

@1 and hm
d !1. To lowest order inG, Eqs. ~23! yield hm

d

5AG/21O(G) and hm
u 5A2/G1O(G1/2) @44#. The thick-

nesshm
u represents the capillary length of the system de

mined for smallG to be in physical unitsA2lk/rg. Analyti-
cal approximations can also be found close to the crit
point (Gc51/4,hc5 ln 4). To lowest order we havehm

u/d

5hc62A3(G2Gc)1O(G2Gc), as derived in Appendix A
2 .

Using the linear stability results of the flat film~Sec.
III A ! and the numerical solution of Eqs.~23! for its absolute
stability, we calculate the ranges of different stability beha
ior in the parameter plane (G,h0), whereh0 is the thickness
of the flat film ~Fig. 5!. This phase diagram is valid for two
and three-dimensional film geometries. However, from n
on we restrict our attention to the two-dimensional geome
i.e., to film profiles depending on only one spatial coordin
x.

FIG. 4. The energyg for G50.1 and different film thicknesse
h0. For details, see the main text.
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IV. INHOMOGENEOUS OR NONUNIFORM SOLUTIONS

In order to study the nonconstant solutions of Eq.~13! we
multiply it by hx and integrate:

]xh5A2Af ~h!2„]hf ~h0!…h2C2. ~24!

We choose

C25 f ~hm!2„]hf ~h0!…hm , ~25!

wherehm is the maximal or minimal thickness for period
solutions. For localized solutionshm5h05h` . Hence every
solution is parametrized by the pair (h0 ,hm) or (C1 ,C2).
Equation ~25! allows us to plot the solutions in the phas
plane (h,hx). The explicit solutionsh(x) can be obtained by
numerical integration, but for certain parameter ranges
analytical result has been obtained~see the Appendix!.

In the parameter range where only one fixed point exi
there are no solutions bounded inh beside the trivial one
h(x)5h0. However, in a range allowing for three fixe
points, three qualitatively different phase portraits can be
served, as shown on the left sides of Fig. 6~a!–6~c!. We call
the phase portraits the~a! drop, ~b! front, and ~c! hole re-
gimes. In the hole~drop! regime one finds, in addition to
periodic solutions an homoclinic solution with the lowe
~highest! fixed point, representing a localized hole~drop! in
an infinitely extended flat film@shown on the right sides o
Figs. 6~a! and 6~c!#. These localized profiles can be found
a continuous range of the parameter plane (G,h), corre-
sponding exactly to the metastable range for flat films in F
5.

In the front regime, in addition to periodic solutions, on
also finds a heteroclinic solution that connects the lowest
highest fixed points, thus representing a localized front
kink solution that connects two infinitely extended flat film
of thicknesses,hm

d andhm
u @the right side of Fig. 6~b!#. This

profile exists only for a single line in the parameter plan
identical to the border between metastable and stable
films, as given by Eq.~23! and shown in Fig. 5. For smallG

FIG. 5. The ranges for stable, metastable, and linearly unst
flat films in the parameter plane (G,h0).
2-5
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FIG. 6. Left: the phase plane
(h,hx) for different values ofh0

for G50.04 showing the regimes
of ~a! drop, h051/4; ~b! front, h0

50.183086074; and~c! hole, h0

55.0. The solid, dashed, and do
ted lines represent, respectivel
unbound, localized, and periodi
solutions. Right: Shown are the
respective localized solutions:~a!
homoclinic drop,~b! heteroclinic
front and~c! homoclinic hole. The
upper part of ~b! shows a flat
~pancake! drop, i.e., a periodic so-
lution located close to the two het
eroclinics in the phase plane.
o
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A.
nd
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eir
the equilibrium contact angleuE , defined ashx at the inflec-
tion point of the front,h052 ln AG/2, is calculated to be
uE5A2(12AG/2)1O(G). For G50 the angle reduces t
uE5A2, the value discussed in Ref.@33# in our scaling.

Similar phase portraits were already sketched in Ref.@19#
for a qualitatively similar disjoining pressure, whereas t
existence of periodic solutions was discussed in Ref.@25#. In
Refs. @45,46# similar hole and drop solutions were foun
close to a first order wetting transition, and identified as cr
cal nuclei. Our study of the energy of the solutions a
supports this finding in our case.

In the following we concentrate on periodic solution
given that the localized solutions are also periodic soluti
of infinite period. To determine the role of the periodic so
tions in the time evolution of unstable films for given me
03160
e

-
o

,
s

-

film thicknessh̄ at fixedG we calculate their period, energy
and amplitude by continuation@47#, starting with the small
amplitude stationary solution discussed in Sec. III A f
some givenh̄ andG. In addition, close to the border betwee
linearly stable and unstable flat films and close to the criti
point, we use analytical solutions derived in the Appendix

Within the range of mean film thicknesses that correspo
to linearly unstable or metastable flat films, for all 0,G
,1/4 we may distinguish three qualitatively different fam
lies of solutions depending on the mean film thickness. Th
characterization is shown in Fig. 7 for fixedG50.05 for the
upper part of the parameter plane (h.hc). An identical be-
havior is found in the lower part. We have the following:

~i! The two lowest curves in Figs. 7~a! and 7~c! and the
two leftmost in Fig. 7~e!. The corresponding flat film is lin-
2-6
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FIG. 7. Characteristics of
families of periodic solutions for

different mean film thicknessh̄ at
fixed G50.05. Shown are results
for the upper part of the paramete

plane in Fig. 5 (h̄.hc). They are
qualitatively similar in the lower
part. ~a!, ~c! and~e! show the two
family types in the linearly un-

stableh̄ ranges called~i! and ~ii !
in the main text, whereas~b!, ~d!,
and~f! show the characteristics o

the families in the metastableh̄
range denotes~iii !. The plots give
@~a! and ~b!# amplitude-period,
@~c! and ~d!# amplitude-energy,
and@~e! and~f!# period-energy de-
pendencies. The energy is show
relative to the corresponding fla
film energy.
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early unstable. There exists only one branch of station
solutions in the period-energy plot. The period increases
the energy decreases monotonically with increasing am
tude. The energy of the periodic solutions is always low
than the corresponding energy of the flat film.

~ii ! The three upper curves in Figs. 7~a! and 7~c! and the
three rightmost in Fig. 7~e!. The corresponding flat film is
linearly unstable. There exist two branches of stationary
lutions in the period-energy plot. The one with the high
energy ends at a finite period that corresponds to the w
length of the neutrally stable solution of the linear analy
lc , as obtained by Eq.~19!. The energy of the terminating
branch is always higher than the corresponding energy of
flat film. This branch represents the nucleation solutions
have to be ‘‘overcome’’ if the film is to break into finite
portions with sizep,lc . This was checked by direct inte
gration in time of Eq.~7! for different initial finite sinusoidal
disturbances. They shrink if their amplitude is smaller th
the amplitude of the corresponding nucleation solution, a
grow if it is larger. The existence of the nucleation solutio
may, however, also indicate that in this thickness range
calized finite disturbances of a lateral extension smaller t
lc play a significant role in the evolution of the film. Al
though the energy of the lower branch decreases very rap
with increasing period, there is a very small range of perio
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where the flat film has the smallest energy, implying its a
solute stability for systems of this size. Consequently, for t
range the low-energy periodic solution is only metastable

~iii ! Curves are shown on the right side of Fig. 7. T
corresponding flat film is metastable. There exist tw
branches of stationary solutions in the period-energy p
Both continue towards an infinite period. The upper ones
nucleation solutions of different periods that energetica
separate the lower periodic solution from the linearly sta
flat film solution, i.e. perturbations with a smaller amplitud
will be damped out. The single critical nucleus—the ‘‘true
nucleation solution—is the solution that one finds followin
the upper branch toward the infinite period. This is the cr
cal drop or hole discussed for the wetting transition in Re
@45,46#. Depending on the system size, the flat film and
lower periodic solution are absolutely stable and metasta
or metastable and absolutely stable, respectively. Note
the relative energy of the solution with the smallest per
changes nonmonotonically with mean film thickness.

This analysis of the stationary solutions of Eq.~1! may
imply that the distinction between the instability range a
the nucleation range of the film thickness generally used
the literature has to be modified to accommodate for~i! the
instability range,~ii ! the range of mixed behavior, and~iii !
the nucleation range.
2-7
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To further characterize the three different ranges, in Fig
we show the wave number ranges for linearly unstable
film modes and periodic nucleation solutions according
the mean film thicknessh̄. Thereby we define a wave numb
for the periodic solutions in analogy to the wave number
harmonic modes ask52p/p. From Fig. 8 one may think
that the separation between~i! and ~ii ! is only due to finite
numerical accuracy. Figure 9, however, shows that it is a
transition, as the amplitude of the nucleation solution w
the highest wave number goes to zero with a power
when the film thickness approaches the border betwee~i!
and ~ii !. This allows an unambiguous numerical identific
tion of this border for allG. The resulting diagram, showin
the ranges for instability, mixed behavior and nucleation
plotted in Fig. 10. Note that the thickness at the border
tween instability and the mixed range does not diverge
G→0, and hence forG'0 the prevailing range is the rang
of mixed behavior.

However, the study of types of solution families and th
energy does not reveal what will actually happen in
physical system during the rupture process within the thi
ness range with mixed behavior. To clarify this issue, in
following a linear stability analysis of the periodic solution
and a direct time evolution are carried out, and the results
compared.

FIG. 8. Maximal wave number for nucleation solutions and
linearly unstable mode for a flat film according to the value of
mean film thickness;G50.05.

FIG. 9. Maximal amplitude of a nucleation solution according
the value of the mean film thickness;G50.05.
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re V. STABILITY OF PERIODIC SOLUTIONS

Let us assess the linear stability of the periodic solutio
obtained in Sec. IV by linearizing the full time depende
equation~7! around the periodic solutions,h0(x). Taking for
the disturbance the ansatzh(x)5h0(x)1eh1(x)ebt gives the
O(e) equation

bh15$@3q2~h0xf hh2h0xxx!#x1~q3h0xf hhh!x%h1

1@2q3h0xf hhh13q2~2h0xf hh2h0xxx!#h1x

1q3f hhh1xx23q2h0xh1xxx2q3h1xxxx, ~26!

whereq5h0(x)2 ln a and all derivatives off are functions
of the periodic solutionh0(x). For a disturbed flat film, Eq.
~26! reduces to Eq.~15!.

To solve Eq.~26! numerically, we discretize it by express
ing the derivatives ofh1@ i # at a pointi as a linear combina-

FIG. 10. The three film thickness regimes due to different typ
of families of stationary solutions@~i!, ~ii ! and ~iii !#, as defined in

the main text, shown in the parameter plane (G,h̄). Dashed lines
separate stable films from range~iii !, solid lines separate range~iii !
from range~ii !, and dotted lines separate range~ii ! from range~i!.
Shown is in~a! the full relevant parameter plane, and in~b! a zoom
close to the critical point at@0.25,ln(4)#. In ~b! the thick lines show
the numerical values of the borders as in~a!, and the thin lines
represent the respective analytical approximations as obtained i
Appendix.
2-8
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FILM RUPTURE IN THE DIFFUSE INTERFACE MODEL . . . PHYSICAL REVIEW E 64 031602
tion of h1@n# where i 22<n< i 12. Using periodic bound-
ary conditions, this yields the algebraic eigenvalue probl

bh11L~h0 ,h0x ,h0xx ,h0xxx ,h0xxxx, f h , f hh , f hhh!h150,
~27!

whereL is a linear operator determined by the periodic s
lution, h0. We search for the largest eigenvalues~i.e., growth
rates! b, and the corresponding eigenvectorsh1 ~i.e., distur-
bances!.

For a givenh̄ we first calculate the linear growth rates
disturbances to the solutions of the terminating branch
nucleation solutions in the mixed range~ii !, taking one pe-
riod of the respective solutions as the unit of the stabi
analysis. The obtained linear growth rates we compare to
linear growth rates for the flat film modes at film thicknessh̄
obtained with Eq.~15!. Taking, for example,G50.05, Fig.
11 shows that the growth rate for the nucleation solut
depends nonmonotonically on its period. The maximum
this dispersion relation can be larger or smaller than
maximum of the dispersion relation of the linear modes
the corresponding flat film. This gives us evidence t
within the newly found mixed regime, depending on fil
thickness, we encounter a generically different behavio
the time evolution. However, before we further support t
statement by integrating the time evolution equation, we
this finding to delineate a separation between nucleat
dominated and instability-dominated behavior within the l
early unstable thickness range. We define this border to b
the film thickness where the maximum growth rates of
flat film mode, given by Eq.~20!, and that of the periodic
nucleation solution are equal as in Fig. 11. The numeric
calculated values are plotted in Figs. 12~a! and 12~b!, for
h.hc andh,hc , respectively.

We further confirm the stability of the lower solutio
branch, upon which we already concluded by considering
energy. The always negative growth rate of disturbances,
ing one period of the stationary solution as the unit for

FIG. 11. Dependence of the linear growth rateb on the period
for nucleation solutions~solid lines! and on wavelengthl for

flat film solutions ~dashed lines! for different values of h̄
andG50.05.
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stability analysis, is shown in Fig. 13~a!. The minimum
points to the most stable solution, i.e., a solution that rela
faster than others to its stationary shape when perturb
Note that its period is not correlated to the wavelength of
fastest flat film mode. However, studying the linear stabil
of the lower solution branch, taking multiples of the perio
of the stationary solution as unit for the stability analys
gives a positive growth rate for disturbances represen
coarse graining. The growth rates for the case where the
is twice the period of the analyzed solution are plotted in F
13~b!. The ongoing coarse graining leads to a long-time e
lution that goes toward solutions with larger period. We w
not dwell on this issue here.

VI. TIME EVOLUTION

Taking the linear stability results for the stationary so
tions in their exact mathematical sense, we can only s
that, for linearly unstable flat films, there exists a thickne
range—the nucleation-dominated range—where some p
odic finite perturbations corresponding to certain nucleat
solutions yield linear growth rates much larger than the l

FIG. 12. The different rupture regimes are shown within t

parameter plane (G,h̄) for ~a! h̄.hc and ~b! h̄,hc . The linearly
unstable range lying to the left of the solid line is divided by t
dot-dashed line in the nucleation-dominated subrange denoteA
and the instability-dominated subrange denotedB. The dotted line
shows the location where the branch of nucleation solutions ce
to exist.
2-9
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THIELE, VELARDE, NEUFFER, AND POMEAU PHYSICAL REVIEW E64 031602
ear growth rate of the fastest flat film mode. However,
take this result only as a hint on the local structure of
flow, ] th, close to these nucleation solutions and hence
assume that in the nucleation-dominated range, local fi
perturbations of a lateral extension smaller than the crit
wavelength for flat film modeslc have a crucial influence on
the structure formation, whereas they have a negligible
in the instability-dominated range. To show this we integr
the time dependent equation~7! for a system of sizenlm ,
taking as an initial condition a flat film with a localized di
turbance,

hinit5h̄F12d coshS x

wlm
D 22G , ~28!

with periodic boundary conditions.n.1 is an integer,lm is
the wavelength of the fastest growing flat film mode forh̄, d

is the maximum disturbance depth in units ofh̄, andw is a
measure of its width in terms oflm .

The results of the time evolution for many different initi
disturbances and mean thicknesses permit one to sustai
assumption given above, namely, the qualitative distinct
of the two thickness regions within the linearly unstab
thickness range as introduced in Sec. V and shown
Fig. 12.

FIG. 13. Linear stability results for the lower branch of period

solutions for differenth̄ at fixedG50.05. The units for the stability
analysis are~a! one period and~b! two periods of the stationary
solution.~b! shows their instability with respect to coarse grainin
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(A) Nucleation-dominated region. The initial disturbance
grows downward, forming a hole with rims at its two side
This hole then expands laterally. Eventually, the thickn
depressions at the outer bases of the rims lead to secon
nucleation events. An example of this type of evolution
shown in Fig. 14~b!. The final, short-time structure~before
coarse graining sets in! is a set of holes with distances unr
lated to lm @last picture of Fig. 14~b!#. The details of the
process and the resulting spatial structure depend strongl
the width and depth of the initial disturbance, as can be s
in the Fourier spectra of a set of final structures@Fig. 15~b!#
or in the evolution of the spatially averaged energy, result
in different values for the final short-time structure@shown in
Fig. 16~b!#. Analogous differences are seen in the evoluti
of the spatially averaged second moment of the film thi
ness~not shown!. Note that in the evolution of the energ
one can clearly distinguish the individual secondary nuc
ation events, giving the process a steplike character. The
dividual nucleation events seem to show power law behav
Further simulations show that the secondary nucleation

. FIG. 14. Short-time evolution for a localized disturbance w

d50.1 and w50.2 at G50.05. ~a! Instability dominated ath̄

52.4. ~b! Nucleation dominated ath̄53.2. The coordinatex is
shown in units of the wavelength corresponding to the fastest gr
ing linear mode,lm . Insets give the time in units of the growt
time tm51/bm of the same mode.
2-10
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FILM RUPTURE IN THE DIFFUSE INTERFACE MODEL . . . PHYSICAL REVIEW E 64 031602
comes less important for mean film thicknesses closer to
border of the linearly unstable range.

(B) Instability-dominated region. The initial disturbance
starts to grow downwards as in~A! but from the beginning
provokes the growth of undulations on its both sides. Th
undulations have the wavelength of the most unstable
film mode, and extend laterally with approximately consta
velocity. This process gives the impression of a grow
wave packet. An example is shown in Fig. 14~a!. The final
short-time structure is a nearly periodic set of holes, wh
ever the width and depth of the initial perturbation may b
as shown in the Fourier spectra of a set of final structure
Fig. 15~a!. Studying the evolution of the energy@Fig. 16~a!#,
we see that only the evolution at its very early stage depe
on the details of the initial perturbation. Then the evolution

FIG. 15. Fourier transforms of the final short-time, spatial p

terns for ~a! h̄52.4 at time t/tm517.2, and~b! h̄53.2 at time
t/tm520.9. Both figures show results for a number of runs
different depths (d50.1 . . .0.4) and widths (w50.1 . . .0.4) of the
initial disturbance forG50.05. Thex axis is as in Fig. 14.

FIG. 16. Average energies subtracted from the correspon

flat film energies are plotted for the short-time evolution at~a! h̄

52.4 and~b! h̄53.2. A number of runs is shown as in Fig. 15~thick
lines, different linestyles!. The thin dotted lines represent the ener
for stationary solutions with periods~a! p5lm and ~b! p
5lm ,16lm/11,16lm/10,16lm/9,16lm/8,16lm/7, and 16lm/6
~from above!.
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nearly identical, albeit slightly shifted in time. The approx
mate linearity of these curves shows that the lateral exten
of the instability is a smooth process of constant velocity.
contrast to~A!, different perturbations result in the same e
ergy for the final short-time structure corresponding to
energy of the stationary solution of period,p, equal to to the
wavelength of the fastest flat film modelm . The spatially
averaged second moment of the film thickness shows
analogous behavior.

The dramatic difference found in the time evolution co
firms the above introduced separation in two experiment
distinguishable subranges—the nucleation-dominated s
range ~A! and the instability-dominated subrange~B!—
within the linearly unstable range. Further simulations fo
range of mean film thicknesses at different parametersG
show that the transition between the two subranges oc
roughly at the dot-dashed line in Fig. 12, as defined in S
V. Being a bit apart from the transition line, the size of t
initial disturbance has no influence onwhich of the two sce-
nario occurs, but only onhow it occurs. However, in the
transition region the size of the inital disturbance do
strongly influencewhich process occurs. This is due to th
fact that, in situations close to equal fastest linear grow
rates for flat film modes and periodic nucleation solutions@as
in Fig. 11~b!# only part of the periodic solutions grow faste
than the fastest flat film mode. Therefore, between~A! and
~B!, depending on the depth and width of the initial distu
bance, one finds behavior corresponding to~A! or ~B! or
combinations of structures caused by secondary nuclea
and growth of the fastest flat film mode. In the latter case
details depend also on system size.

VII. DISCUSSION AND CONCLUSION

We have analyzed the evolution of a thin liquid film und
the influence of the disjoining pressure that arises in
combination of diffuse interface theory with thin film hydro
dynamics@33#. First we determined the stable, metastab
and linearly unstable thickness ranges according to the
ues of the control parameterG, and discussed the flat film
solutions, and bifurcations when parameters change val
Then, we have obtained the families of stationary perio
and localized solutions and have assessed their linear st
ity. In the metastable film thickness range we identified p
riodic and localized nucleation solutions that separate dec
ing and growing finite disturbances. A second bran
consists of periodic solutions that are linearly stable, tak
their periods as units for the stability analysis. However, th
are unstable if multiples of their period are taken as units
the stability analysis~coarse graining!.

In the linearly unstable film thickness range we have d
tinguished two subranges showing qualitatively different b
haviors: ~A! a nucleation-dominated region and~B! an
instability-dominated region. In the nucleation-dominat
subrange initial small-scale finite disturbances are crucial
the final structure, and the linearly unstable flat film mod
are too slow to act. In the instability-dominated sub-ran
the situation is the opposite. The fastest flat film wavelen
determines the structure formation, and finite disturban
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have negligible influence on the process. This was confirm
by a direct integration of the time evolution equation~7!.
Despite the restriction to two-dimensional geometry, we
lieve this distinction is also valid for the more realistic thre
dimensional geometry.

The results obtained are also valid for other, forma
similar disjoining pressures that describe short-range de
bilizing and long-range stabilizing interactions such as
widely used pressure that combines destabilizing polar
stabilizing apolar molecular interactions~case IV in Refs.
@26,28,30,31,35#, and also used in Ref.@11,14#!. Such a dis-
joining pressure can be accommodated in our theory by
placing the unscaled function]hf resulting from diffuse in-
terface theory@Eq. ~2!# with the negative of the disjoining
pressure from Ref.@26# ~case IV! and introducing an adapte
scaling. Then calculations as performed here yield a sim
difference between nucleation-dominated and instabil
dominated subranges within the linearly unstable thickn
range@36#. The results for this disjoining pressure comp
ment Ref.@28# ~case IV!, where they studied the time evo
lution of finite amplitude sinusoidal perturbations with wav
lengths larger than the critical wavelength of the linear
film mode,lc . They compared this nonlinear time evolutio
to the extrapolated behavior of the corresponding lin
modes. In contrast, we focus on small scale disturbances~de-
fects! with lateral extensions smaller thanlc . Also, we com-
pare, on the one hand, only linear growth rates of flat fi
modes and nucleation solutions~Fig. 11!, and on the other
hand only the nonlinear evolutions of finite disturbances a
flat film modes~Figs. 14–16!. However, in addition to the
qualitatively similar main result here and in Ref.@36#,
namely, the existence of the subranges~A! and ~B!, the dif-
ferent disjoining pressures cause important details to diffe
can best be seen by comparing the final parameter plane
~Figs. 5 and 12! with Fig. 4 of Ref. @36#. Increasing the
strength of the destabilizing short-range interaction in R
@36# causes even very thick films to be only metastable
not absolutely stable. Here, on the contrary, there exists
upper border for the metastable range for allGÞ0. In addi-
tion, in Ref. @36# for vanishing stabilizing interaction, th
entire thickness range is dominated by nucleation indica
by the border between~A! and ~B!, approachingh̄50,
whereas here no such dramatical change occurs, the bo
between~A! and ~B! approaches a finite value ofh̄ as G
→0. The behavior in Ref.@36# is caused by the divergenc
of the disjoining pressure for vanishing film thickness. O
results, especially the description of the families of perio
nucleation solutions, can also be used to extend the find
of single critical droplets and holes for first-order wettin
transitions@45,46# toward finite periods.

Experimental systems with formally similar disjoinin
pressures were investigated in Refs.@14,48#. The experi-
ments of Refs.@4,9,12# can also be discussed in our fram
work if one includes gravitation as a long-range stabilizi
interaction, competing with the destabilizing apolar intera
tion ~the limiting case of very smallG). In Refs.@14,48# the
different patterns observed were explained by the distinc
of thickness ranges for dewetting by nucleation and spino
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dewetting. Our results merely shift the boundary between
two regimes. This explains why in Ref.@48# the transition
between their regime III~spinodal holes or ‘‘less random
nucleation’’ in their jargon! and IV ~nucleated holes or ‘‘ran-
dom nucleation’’! seems to be already in the upper part
the spinodal regime. Note that their random droplet regi
~II ! corresponds to our lower nucleation range. In the exp
ments of Refs.@4,9#, the authors agreed in describing th
situation as linearly unstable. On the one hand, the proce
seen as spinodal dewetting based on the dependence o
hole density on the film thickness@4#, and on the other hand
it is seen as dewetting by nucleation based on the rand
distribution of the holes@9#. The ambiguity is eliminated if
we consider that the experiments were done with film thi
nesses that correspond to the nucleation-dominated subr
within the linearly unstable range with some disturbanc
present that eventually determine the dewetting process.
spinodal dewetting could only be seen in a small thickn
range, or in situations with little or no finite disturbances
defects in the film. Three-dimensional analyses of the de
etting process, as done in Refs.@30,32# with initial condi-
tions like those used here in Sec. VI are expected to sup
our view by studying the competing influence of finite di
turbances and the linear instability of the flat film in a re
istic geometry.

The question of nucleation in the linearly unstable thic
ness range was also raised in systems exhibiting spin
decomposition, where the thickness in our study is repla
by the concentration of one component. Different aspe
discussed here were described for equations similar to
analytic limiting case@Eq. ~A7!#. In Refs. @38,39# the free
energy has an additional cubic term, and Ref.@40# uses a
general quartic expression. Although their solutions are
ferent, certain general features are found in all the syste
The study in Ref.@38# of the stationary periodic concentra
tion profiles and their parameter dependence led to a qu
tative discrimination analogous to our distinction in thr
different families of solutions~i!, ~ii !, and~iii ! in Sec. IV but
without determining the boundary between~i! and~ii !. They
identify the positive-energy branch within the metasta
range as periodic nucleation-type solutions@38#, and suggest
that ‘‘the phase separation in the deep spinodal region, m
be distinguishable, perhaps more nearly periodic or ‘sp
odal,’ than in the rest of the spinodal region’’@39#. The latter
corresponds to our distinction between instability-domina
and nucleation-dominated subranges within the linearly
stable thickness range.

Reference@40# focused on the stability of periodic con
centration profiles to perturbations of equal period, aiming
a characterization of the short-time behavior of multilay
systems. The authors found different solution types that c
respond to the periodic nucleation solutions and stable p
odic solutions described here. They established concentra
~film thickness! ranges for the absolute stability, metastab
ity, and linear instability of different solution types at fixe
periods, comparing the energy of homogeneous soluti
~flat film! and periodic solutions. Their analysis correspon
to part of our discussion of Fig. 7 in Sec. IV, especially in~ii !
and~iii !. From these analogies we conclude that the findin
2-12
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presented here can also account for phenomena occurrin
spinodal decomposition. In particular, the conjecture o
highly disturbance-dependent system behavior in a subre
of the spinodal region in spinodal decomposition@39# can be
made precise using the quantitative description of
transition between nucleation-dominated and instabil
dominated subranges within the linearly unstable thickn
range introduced here.

ACKNOWLEDGMENTS

This research was supported by the European Union
der ICOPAC Grant No. HPRN-CT-2000-00136, by the G
man Academic Exchange Board~DAAD ! under Grant No.
D/98/14745, and by the Spanish Ministry of Science a
Technology under Grant No. PB 96-599.

APPENDIX A: ANALYTICAL SOLUTIONS CLOSE
TO BIFURCATIONS

Close to the bifurcation lines one can approximately o
tain the solutions analytically. These results are used to c
check the numerical results.

1. Close to the linear instability line

The transition line between the metastable and the line
unstable film thickness range in the (G,h) plane corresponds
to the crossing of two fixed points of Eq.~13!, as shown in
Fig. 3~b! for fixed G. The line in the phase plane is chara
terized by]hhf (h)50, allowing one to approximate Eq.~13!
close to this line. We introduce the local variablesh05h0*
1m andh5h0* 1e(x) whereh0* is the film thickness on the
bifurcation line andO(m)'O„e(x)…!1. Writing Eq.~13! to
O(m2) gives

05]xxe2 1
2 ]hhhf uh

0*
~e22m2!, ~A1!

that can be integrated. The choice of the integration cons
C̄2 permits one to obtain the homoclinic solutions (C̄250)

e5mS 3 tanh2F1

2
Am f 3~x2x0!G22D ~A2!

or the periodic solutions@C̄25 1
2 f 3(emax

3 /32m2emax)#

e5c31~c22c3!sn2FAf 3Ac12c3~x2x0!

2A3
,
c22c3

c12c3
G ,

~A3!

where sn@u,k# is the Jacobi sine amplitude, andf 3 stands for
]hhhf uh

0*
. Close to the upper instability line in the pha

plane~related to hole solutions! c3 is the minimal thickness
emin , c2 is the maximal thicknessemax, andc1.c2 has no
obvious physical meaning. Givenemax5c2, the othere i are
given by

c1/35
1

2
~2c26A3A4m22c2

2!, ~A4!
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where the positive sign givesemin5c3.
Looking for periodic solutions close to the lower instab

ity line ~related to drop solutions!, we identify the constants
as follows: c2 is the givenemin. c35emax and c1,c2 are
interchanged with respect to above. The Jacobi elliptic fu
tion sn@u,k# gives periodic solutions forkÞ1. For k5(c2
2c3)/(c12c3)51, it goes over to the homoclinic solutio
given by Eq.~A2!. The period of the solutions is given by

p~m,c2!5
4A3

Af 3Ac12c3

KFc22c3

c12c3
G , ~A5!

and the mean film thickness by

ē~m,c2!5c31~c12c3!

3S 12EFc22c3

c12c3
G Y KFc22c3

c12c3
G D , ~A6!

whereK@k# and E@k# are the complete elliptic integrals o
the first and second kinds, respectively.

2. Close to the critical point

Close to the critical point (Gc51/4,hc5 ln 4), we intro-
duce h05hc1m, h(x)5hc1e(x) and G5Gc1g with
O(m)'O(e(x))'O(g)!1. We are interested in the rang
of negative values ofg. Writing Eq. ~13! to O(e3), thereby
taking into account that ]hf (hc)5C1 and ]hhf (hc)
5]hhhf (hc)50 ~see Sec. III!, gives

05]xxe2 1
6 ]hhhhf uhc

~e32m3!2g~e2m!. ~A7!

Integrating Eq.~A7! twice yields the general periodic solu
tions

e5e21
e12e2

11a sn2@c~x2x0!,k#
, ~A8!

with

a5
e12e4

e42e2
, k5

~e22e3!~e12e4!

~e12e3!~e22e4!
,

c5
1

4
Af 4

3
~e12e3!~e22e4!, ~A9!

and the period

p5
2

c
K@k#. ~A10!

e4 is the value given at an extremumem and the othere i are
the roots of the cubic equatione31d1e21d2e1d350 with
d15em , d2512g/ f 41em

2 and d35em
3 24m3112gem / f 4

224gm/ f 4, and f 4 stands for]hhhhf uhc
.

At em5m and m5m f5A26g/ f 4 the three remaining
roots are (m f ,2m f ,2m f) and Eq.~A8! reduces to the het
eroclinic or front solution
2-13
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e5m f tanh@m f~x2x0!#, ~A11!

that connects two flat filmsemax5m f andemin52m f , sym-
metric with hc . The relationm f

216g/ f 450 is also an ap-
proximation close to the critical point for the border betwe
absolutely stable and metastable flat films. To obtain the
cal approximation of the border between metastable and
early unstable thickness ranges, we use the ansatze5m
1d exp(ikx) (d!m) in Eq. ~A7! to obtain the relationm f

2

12g/ f 450.
However, calculating the border between the purely sp

odal region~i! and the region where also periodic nucleati
solutions exist~ii ! requires some more effort. We approx
mate the thickness profile for small amplitudes as
e,

s

e

an

e

hy

ev

nd

pl

,

03160
-
n-

-

e~x!5m1a~A1exp~ ikx!1Ā1exp„2 ikx……

1a2
„A2 exp~2ikx!1Ā2exp~22ikx!…

with a!1. This is valid for periodic solutions with wave
numbersk close to the critical wave numberkc , expressed
by k25kc

2(12r 1a22r 2a4). Introducing these relations in
Eq. ~A7! we project onto the modes exp(ikx) and exp(2ikx),
yielding two stationary amplitude equations for theAi . The
first order ina gives kc , the second order yields a relatio
betweenA1 and A2, and the third order gives the relatio
r 15A1

2s(m,g), wheres is some function. At the border th
derivative of the wave number with respect to amplitu
changes sign, i.e.,r 150. The resulting conditions(m,g)
50 gives the border atm f

21 6
5 g f450.
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