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Film rupture in the diffuse interface model coupled to hydrodynamics
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The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding
a single evolution equation for the film thickness. This equation incorporates an additional pressure term—the
disjoining pressure—accounting for the molecular forces. Recently a disjoining pressure was derived coupling
hydrodynamics to the diffuse interface modlel M. Pismen and Y. Pomeau, Phys. Rev6E 2480(2000].
Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we
examine the thickness ranges for linear instability and metastability for flat films, the families of stationary
periodic and localized solutions, and their linear stability. The results are compared to simulations of the
nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists
a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures.
In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat
film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other
forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.
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[. INTRODUCTION is compared with the dependence of wavelength on thickness
taken from the linear stability analysjg,16]. On the other

The stability of thin liquid films on solid substrates is of hand, ordered and disordered arrangements of holes are
interest in applications such as coating or drying processe$ound to be caused by instability and nucleation, respectively
Destabilizing influences leading to film rupture can arise[12,9,14.
from gradients in the surface tension caused by a spatial To describe the dewetting process one takes advantage of
variation of temperature or surfactant concentration fields, byhe disparity of the length scales, film thickness, and lateral
evaporation, or by molecular forces. The latter forces arehanges in the film profile, that allows the use of the long-
especially important for very thin films with thicknesses wave or lubrication approximation of Stokes equatiphg|.
smaller than 100 nm. The rupture process due to moleculaFhe resulting nonlinear evolution equation for the film thick-
forces, and hence dewetting, is studied either to understantkess is formally similar to the Cahn-Hillard equation that
how to keep thin films stablfl] or how to produce struc- describes the spinodal decomposition of a binary mixture
tured thin films in a controlled manngz2]. [18]. Therefore, the rupture due to the surface instability is

Dewetting proceeds by the formation of holes in unstablealso called “spinodal dewetting['19].
films. Subsequently the lateral expansion of the holes results The possibly destabilizing molecular forces are included
in the formation of a polygonal network of liquid rims or in the thickness evolution equation as an additional pressure
ensembles of liquid drodsS,4]. Experimental and theoretical term, the so-called disjoining pressure first introduced by
investigations focus on all aspects of the process: the initiaDerjaguin and co-workelf0,21]. Depending on the particu-
rupture of the film[5,1,6], the growth process of single holes lar problem treated, the disjoining pressure may incorporate
[7,8], the evolution and the final state of the overall patternvan der Waals, electrostatic, and structural interaction terms
[4,2,9,10Q, and instabilities during hole grow{i1]. [22-25. Every term of the disjoining pressure acts on its

For the film rupture the two widely discussed mechanismspecific thickness scale, and can be stabilizing or destabiliz-
are surface instability and heterogeneous nucleation due iag. The large number of possible combinations can be
defects. They occur in the range of metastable and linearlyoughly ordered by some of the global features of the depen-
unstable film thicknesses, respectivgly4,9,12—-15,6 Dif- dence of the disjoining pressure on film thickness, such as
ferent procedures have been proposed to distinguish thée behavior for small and large film thicknesses, and num-
mechanisms through an analysis of the final hole pattern. Oher of maxima or minima. Standard choices normally include
the one hand, the change of hole density with film thicknesshort- and long-range components that can be destabilizing
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or stabilizing. Their combination gives four types of disjoin- gas

ing pressurg 26,27 that have been used to study the two-

and three-dimensional evolution of unstable fi[[28—32. A

common shortcoming of all the used pressures known to the —— T
authors are the singularities arising when the film thickness

goes to zero. z liquid
i i h(X) qur
Recently, Pismen and Pomeau combined the long-wave
X

approximation for thin films with a diffuse interface descrip-
tion for the surface of the liquid, to derive a disjoining pres-
sure that does not contain divergencies for vanishing film
thicknesq 33]. First they discussed the vertical density pro- VAP
file for a liquid in a flat horizontal layer of fluid incorporating substrate

a smooth but nevertheless relatively sharp density transition
between fluid and gas, and the density variation close to the
solid substrate due to molecular interactions that enter into
the calculation via the boundary condition for the fluid den-used in Refs[11,26,28,30,31,35,36and to the spinodal de-
sity at the substrate. Then they combined the obtained dewomposition of binary mixtures by clarifying in which way
sity profile with the Stokes equation in the long-wave ap-we have extended earlier results on solution types and their
proximation to account for dynamic situations. The arisingstability [37—-40Q.

film thickness equation has the typical form of a thin film

equation with disjoining pressuféd 7], where the disjoining

pressure now results from diffuse interface theory. We use  II. FILM THICKNESS EVOLUTION EQUATION

the film thickness equation from R3] to perform a de-

tailed analysis of the competing mechanisms leading to thBrication approximation the film thickness evolution equa-

[:lupeturrue (t)ljri tggdli'gu'? f|Im:[ E;’]y ru?tgre h%ret Wte nge??hno;t tion for a thin liquid film on a solid substrate was derived in

'up g to patches ot dry substrate but the Torg ¢ [33]. For a two-dimensional geometry, as sketched in
mation of holes with a very thin remaining film, as in a Fig. 1, it writes
precursor film mode[34]. On the one hand, the analysis " ™’
aims at generic results for film rupture on a horizontal sub-
strate under the influence of destabilizing short-range and ath=—0,{Q(h)dy[ ydych— anf(h,a) ]}, (1)
stabilizing long-range interactions also applicable to other
disjoining pressures. On the other hand, it also serves as a
key study for later analyses of sliding drops on an inclinedwhere h denotes the film thickness, ar@(h)=h%/37 the
plane or with surface tension gradient forces. mobility factor due to the assumed Poiseuille flopd,,h

We begin with a thin film evolution equation, discuss therepresents the Laplace or curvature pressure, and

scaling used, introduce a Lyapunov functidree energy po-
tentia), and proceed with the derivation of the stationary ) 1
equation (Sec. I). In the following we discuss stability, _ K —hi
metastability, and linear instability for a flat or homogeneous onf(h,a)=xM(h,a)+pgh= ?e (1_56 ) *rgh
film (Sec. Ill), and calculate the families of stationary inho- (2
mogeneousperiodic and localizedsolutions in the different
parameter range$Sec. 1V). For particular parameter values, - ]
analytical solutions are given. The linear stability analysis ofiS a@n additional pressure term corresponding to the free en-
these solutiongSec. V) allows us to formulate a hypothesis €9y f(h.a). gis the gravitational acceleration, apdy, and
on their significance in the evolution process that is checked are the respective density, surface tension, and viscosity of
by direct integration of the time evolution equation for lin- the liquid.II(h) = —«M(h,a) is the disjoining pressure aris-
early unstable thin filmgSec. V). We make a distinction ing from diffuse interface theory, the constantas the di-
between two thickness subranges within the linearly unstablgension of a spreading coefficient per lengihis a small
thickness range, where a qualitatively different behavior ilimensionless positive parameter describing the wetting,
predicted during structure formationA) a nucleation- Properties in the regime of partial wetting ahi the length
dominated subrange, where initial small-scale finite disturscale of the diffuse interfack83]. The functional form of
bances determine the final structure, hence overcoming tHd (h,a) (scaled as explained belpwan be seen in Fig. 2.
fastest flat film mode; anB) and instability-dominated sub- pgh is the hydrostatic pressure. Subscripts, andh denote
range, where the fastest flat film mode overcomes the finitéhe corresponding partial derivatives.
perturbations. Finally, in Sec. VIl we discuss the applicabil-
ity of our main results to thin liquid films subject to various
disjoining pressures formally similar to the one studied here,
as, for example, the combination of a destabilizing short- To introduce dimensionless quantitiésith tilde), suit-
range polar and a stabilizing long-range apolar interaction aable new scales are used:

FIG. 1. Sketch of the two-dimensional geometry.

Using a diffuse interface model and the long-wave or lu-

A. Scaling
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e
¥

lations. In this way all derivations can be used easily what-
ever the particular disjoining  pressure  used
[26,28,30,31,35,36,41

e
=

B. Lyapunov functional

At different stages of our investigation we need a valid
measure for the energy that can be assigned to a given film
thickness profileh(x,t). For this purpose, following, for ex-
ample, Refs[39,42,19, we introduce a semidefinite positive
functional

F(h)= f
FIG. 2. Fixed points of the dynamical system represented as _ o
crossings of the curves(h)—M(h,) (solid line) and —G(h which we shall show is a Lyapunov functionhlis the mean

—hg) (broken lineg at hy=1/4 and differenG. film thickness, and her€, is the Lagrange multiplier corre-
sponding to material conservation needed when comparing
different stationary solutions for the same liquid volume. To

<
=
I

M(h)-M(h) or -Gh-h)

%(axh)%f(h)—cl(h—ﬁ) dx, 9)

t= @T, show thatF(h) is a Lyapunov functional, we have to prove
Kl that its functional derivative is semidefinite negative. We
€©)] write the evolution equatiofi7) as
h=Ih, SF
\f ath=0| QM) dx -], (10
VY~
X=\/—X.
K with Q(h)=(h—Ina)3, and é denoting functional variation.

) ) ) _ ) o Multiplying Eq. (10) by §F/h, and integrating with respect
The ratioxl/y is O(a®) [33], i.e., the scale in the direction o gives, after integration by parts, the total time derivative
is I/a. Expecting no confusion from the reader after droppingpf F:
the tildes, we find

dF SF 2
ath:_0"x{hgax[‘9xxh_I\/l(haa)_GI‘]]} 4 EZ_J’ Q(h)(ﬁxﬁ) dx. (11
where Studying only situations with positive physical film thick-
ness,h—Ina, the derivativedF/dt is always negative, and
_lpg soF is a good choice for a Lyapunov or energy functional.
G_T 5 We will further call it “energy,” for short, and use it to

compare stationary solutions to determine their absolute sta-
gives the ratio between gravitation and molecular interacbility and measure their time evolution in the numerical in-
tions with values always taken to be positive. We will seetegration of Eq(7).
that even ifG is very small we cannot drop it, because it
crucially influences the behavior of the solution of the sys- C. Stationary equation
tem; the problem is singular &=0. The form ofM(h,a)
allows us to transfer the constaminto the mobility factorQ
by the transformatiom* =h+In a. After dropping the star,

To study stationary and especially homogeneous or flat
film solutions, we set;h=0 and integrate Eq7), yielding

and once more expecting no confusion in the reader, we find Co
0= ﬁxxxh— (ﬁhhf(h))ﬂxh‘i‘w. (12)
M(h)=2e "N1-e™ M), (6)
. . ) We are looking for bounded solutions of three typém:
while the evolution equatiofil) becomes periodic solutions(b) localized solutions, andc) flat film
3 solutions. Foi(a) the reflection symmetry with respect to the
dth=—d{(h—Ina)~a,[ dh—dnf(h)]}, (7)  extrema of the solutions implie€,=0. The same follows
. for (b) and(c), because there aX derivatives vanish at in-
with finity. A second integration yields
dpf(h)=M(h)+Gh. 8 0=d,,h(x)—d,f(h)+C;. (13

From now on we will use the general foréqf(h), introduc-  The constan€; accounts for external conditions like chemi-
ing the example treated here only in the final stage of calcueal potential, vapor pressure, or mass conservation. Regard-
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S VY ' —h +ikx), where 8 provides the linear instability growth rate
andk accounts for the horizontal scale of disturbances. Lin-
ok | earizing the full time dependent equatitf) with this ansatz
°r i yields
< 1< [ _ 3212
o 1ot | B=—(hg—Ina)°kTk+ dpnf(hg)]. (15
_____ - : ,/’ \\\\ I The flat film is unstable foB>0, i.e., for
""""" P S
0_ -
00_ oo 006 o OT 0 E b 10 15 5hhf(ho):_297h°(1_297h°)+6<0- (16)
G 0

Accordingly, there is a range of linearly unstable thicknesses

FIG. 3. Bifurcation diagram fofa) fixed hy=1/4, and(b) fixed at intermediate values

G=0.04 showing flat film solutions according to the vali@&and
hg, respectively. Solid and dashed lines correspond, respectively, to hd<h.< QY (17)
linearly stable(saddlg¢ and linearly unstablécentej ranges. : o="i
with
ing the latter, the choic&C;=4d,f(hy)=M(hgy)+Gh, en-
sures a flat film solution of Eq13), h(x)=hg. Using the 1/1 1
sameC;(hg) for localized solutionshy is the thickness at h¥/d= —In > 51 Z_G . (18
infinity, h.. . For periodic solutiondy, is the thickness at the
inflection point of the respective profile. Its difference from - ~ 1 e hash~ —In(G/2) and h'~In2+G. In the
) . . S i i .
the thickness at the maximum or minimum of the period is Aimit G0 there is no upper limit for the instability range,

measure of the curvature at the maximum and minimum - .
as even very thick films are unstable, and hence we cannot

:ﬁ;g?gr']vﬂ%/' twgt?er:r;?t E?jﬁgﬂigﬂéonog)s] frggl ér)](e erztlgg setG to zero. As derived in Appendix A 2 close to the critical
9y 9. (9 PECIET. hoint (G.=1/4h.=In4), Eq. (18) simplifies to h¥d=h,

Later we will compute periodic solutions of E¢L3), and
wize them by the il tr?lk) 5, 2Cc GO~ G).
parametrize them Dy —Iheir mean 1iim - hickness, The critical (smallest unstabjewavelength for a given
=(1/p) fEh(x)dx, and periodp. Before embarking on this, film thicknessh. is
in Sec. Il we study the flat film solutions of E¢13) and 0

their stability. 2
a
S (19
1. HOMOGENEOUS OR UNIFORM SOLUTIONS V= nnf(ho)

A chosenhy is by construction the thickness of a flat film The thickness profilé(x) = hy+ € exd ik (hg)x] with k.(hg)
solution or fixed point of Eq(13). Due to the nonlinear =./—g,,f(hy) is neutrally stable §=0), and represents a
relationC,(hg), given the constant; by the choice oh,, small amplitude stationary solution of E@.3).
other flat film solutionsh(x) =h; are given by The fastest growing mode has the wavelength,

=2\, whose growth rate is
anf(he)=anf(ho). (14 ‘ ’

1 3 2
Here they are represented by the crossing points of the curve Bm=17(ho—Ina)[dnnf(ho) ]~ (20
M(h) =M (ho) with the straight line- G(h—ho), as shown  The jinear stability results are indeed related to the fixed
in Fig. 2. ForG>0 one finds one or three fixed points de- hyints or uniform solutions discussed in Sec. .
pending on the value o and hy. The bifurcation points
between the two regimes are characterized dyf(hg)
=dpM(h)+G=0 and Eq.(14). For (G.=1/4h.=In4) we
find a critical point characterized by E(L4) and dp,,f(h.) Alinearly stable flat film may not be absolutely stable, for
=dnnnf(he) =0. If G>1/4, there exists only the fixed point it can be unstable to finite amplitude disturbances. This cor-
ho. Linearizing Eq.(13) around each one of the fixed points, responds to subcritical instability or metastability. Only if,
we find that for 9,,f(h;)>0 they are saddles and for for a given film thickness, there is no thickness profile with
dnnf(hs) <0 centers. This corresponds to the results of thesmaller energy is the flat film absolutely stable. To clarify
linear stability analysis for flat films as will be shown below. this issue further, we assume an infinitely long film of thick-
To illustrate the existence of different flat film solutions, we nesshy. Only a small part of finite lengts has thickness$,

plot in Fig. 3 bifurcation diagrams fofa) fixed hy and (o) ~ to ensure that the mean film thicknessis The width of the
fixed G, respectively. finite transition region between the two thickness levels is

small compared ts, so its energy can be neglected. Now we
can calculate the energy per unit length of the changed part
g, using the Lyapunov functiondEq. (9)]

B. Absolute stability of flat film solutions

A. Linear stability of flat film solutions

To assess the linear stability of the flat filing<) =hy we
use a Fourier mode decompositidm(x)=hy+ € exp(Bt g(h)=f(h)—Cy(hg)h+Cy(hg)hy, (21)
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FIG. 4. The energy for G=0.1 and different film thicknesses Qle=—"7 L ) 1 .
ho. For details, see the main text. 0 0.1 G 0.2

with FIG. 5. The ranges for stable, metastable, and linearly unstable

f(h)= —e_h(2—e_h)+Gh2/2. 22) flat films in the parameter plan&(h).
The functiong(h)— C.(ho)hy is plotted in Fig. 4 for differ- IV. INHOMOGENEOUS OR NONUNIFORM SOLUTIONS
ent values of the mean film thicknebg, and fixedG=0.1. In order to study the nonconstant solutions of E®) we
The two minima ofg(h) represent the lower and upper lin- multiply it by h, and integrate:
early stable thicknesses discussed in Sec. Il A. However,
only the deeper minimum corresponds to an absolutely stable ayh=2\f(h)— (9,f(hg))h—C,. (24)
film thickness, and the other is a metastable state. The maxi-
mum represents the linearly unstable thicknesses as in Seédle choose
[l A. For 0<G<G.=1/4 the metastable thickness range is
limited by the value oty where the two minima have the Cy=f(hy)— (dnf(hg))hp, (25)
same depth. There exist upper and lower limits, that we de-
notehY, andh® | respectively. They are characterized by ~ whereh,, is the maximal or minimal thickness for periodic
solutions. For localized solutiorts,,=hy=h.,. Hence every
Infpu=nf|nd, solution is parametrized by the paihd,h,) or (C;,C,).
" " 23 Equation (25) allows us to plot the solutions in the phase
plane h,h,). The explicit solution$(x) can be obtained by
numerical integration, but for certain parameter ranges an
analytical result has been obtaingke the Appendix
In the parameter range where only one fixed point exists,
there are no solutions bounded linbeside the trivial one
. : L h(x)=hy. However, in a range allowing for three fixed
tion. qu low enough, albeit nqt vanishi@g<1, they can be points, three qualitatively different phase portraits can be ob-
determlneg analytically, starting _from the assumpt|¢1§$ served, as shown on the left sides of Fi¢r)66(c). We call
>1 andhy<1. To lowest order inG, Egs.(23) yield hn,  the phase portraits thé) drop, (b) front, and(c) hole re-
=\G/2+0(G) and h,=2/G+0O(G"? [44]. The thick-  gimes. In the holgdrop) regime one finds, in addition to
nesshy, represents the capillary length of the system deterperiodic solutions an homoclinic solution with the lowest
mined for smallG to be in physical units/2| x/pg. Analyti-  (highesj fixed point, representing a localized hdldrop) in
cal approximations can also be found close to the criticabn infinitely extended flat filmishown on the right sides of
point (G.=1/4h.=In4). To lowest order we havdnﬁ{d Figs. 6a) and Gc)]. These localized profiles can be found in
=h,*2y3(G—G,)+0(G—G,), as derived in Appendix A a continuous range of the parameter pla&Hh), corre-
2. sponding exactly to the metastable range for flat films in Fig.
Using the linear stability results of the flat filrfBec. 5.
[ll A) and the numerical solution of Eq®3) for its absolute In the front regime, in addition to periodic solutions, one
stability, we calculate the ranges of different stability behav-also finds a heteroclinic solution that connects the lowest and
ior in the parameter planeé3(h,), whereh, is the thickness highest fixed points, thus representing a localized front or
of the flat film (Fig. 5). This phase diagram is valid for two- Kink solution that connects two infinitely extended flat films
and three-dimensional film geometries. However, from nowof thicknesseshﬁ] andhp, [the right side of Fig. @)]. This
on we restrict our attention to the two-dimensional geometryprofile exists only for a single line in the parameter plane,
i.e., to film profiles depending on only one spatial coordinatddentical to the border between metastable and stable flat
X. films, as given by Eq(23) and shown in Fig. 5. For smaB

g(hr)=g(hq).
Note that the solutions of Eq$23) also correspond to the

conditions determining the two final equilibrium film thick-
nesses obtained in Refd1,19,43 by a Maxwell construc-
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FIG. 6. Left: the phase planes
(h,h,) for different values ofh,
for G=0.04 showing the regimes
of (a) drop, ho=1/4; (b) front, hy
=0.183086074; andc) hole, hq
=5.0. The solid, dashed, and dot-
ted lines represent, respectively,
unbound, localized, and periodic
solutions. Right: Shown are the
respective localized solution$a)
homoclinic drop,(b) heteroclinic
front and(c) homoclinic hole. The
upper part of (b) shows a flat
(pancakedrop, i.e., a periodic so-
lution located close to the two het-
eroclinics in the phase plane.

the equilibrium contact angléz , defined a$, at the inflec-
tion point of the front,hy=—1In+G/2, is calculated to be

fe=12(1-\/G/2)+O(G). For G=0 the angle reduces to amplitude stationary solution discussed in Sec. Il A for

film thicknessh at fixedG we calculate their period, energy,
and amplitude by continuatio#7], starting with the small

9E:_\/§_' the value discussed in R¢83] in our scaling. some giverh andG. In addition, close to the border between
Similar phase portraits were already sketched in Re]  |inearly stable and unstable flat films and close to the critical
for a qualitatively similar disjoining pressure, whereas thepgint, we use analytical solutions derived in the Appendix A.
existence of periodic solutions was discussed in R&s]. In Within the range of mean film thicknesses that correspond
Refs. [45,46 similar hole and drop solutions were found to linearly unstable or metastable flat films, for ak @
close to a first order wetting transition, and identified as criti-< 1/4 we may distinguish three qualitatively different fami-
cal nuclei. Our study of the energy of the solutions alsalies of solutions depending on the mean film thickness. Their
supports this finding in our case. characterization is shown in Fig. 7 for fix€&i=0.05 for the
In the following we concentrate on periodic solutions, upper part of the parameter plang>h.;). An identical be-
given that the localized solutions are also periodic solution$avior is found in the lower part. We have the following:
of infinite period. To determine the role of the periodic solu- (i) The two lowest curves in Figs.(d and dc) and the
tions in the time evolution of unstable films for given meantwo leftmost in Fig. 7e). The corresponding flat film is lin-
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FIG. 7. Characteristics of
families of periodic solutions for
different mean film thicknesk at
7 fixed G=0.05. Shown are results
for the upper part of the parameter
plane in Fig. 5 b>h.). They are
qualitatively similar in the lower
part. (a), (c) and(e) show the two
family types in the linearly un-
stableh ranges calledi) and (ii)
in the main text, wheread), (d),
and (f) show the characteristics of
the families in the metastable
range denote§ii). The plots give
[(@ and (b)] amplitude-period,
[(c) and (d)] amplitude-energy,
and[(e) and(f)] period-energy de-
pendencies. The energy is shown
relative to the corresponding flat
film energy.
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early unstable. There exists only one branch of stationaryhere the flat film has the smallest energy, implying its ab-
solutions in the period-energy plot. The period increases angolute stability for systems of this size. Consequently, for this
the energy decreases monotonically with increasing amplirange the low-energy periodic solution is only metastable.
tude. The energy of the periodic solutions is always lower (iii) Curves are shown on the right side of Fig. 7. The
than the corresponding energy of the flat film. corresponding flat film is metastable. There exist two
(if) The three upper curves in Figsay and 4c) and the  branches of stationary solutions in the period-energy plot.
three rightmost in Fig. (8). The corresponding flat film is Both continue towards an infinite period. The upper ones are
linearly unstable. There exist two branches of stationary sonucleation solutions of different periods that energetically
lutions in the period-energy plot. The one with the higherseparate the lower periodic solution from the linearly stable
energy ends at a finite period that corresponds to the wavélat film solution, i.e. perturbations with a smaller amplitude
length of the neutrally stable solution of the linear analysiswill be damped out. The single critical nucleus—the “true”
\¢, as obtained by Eq.19). The energy of the terminating nucleation solution—is the solution that one finds following
branch is always higher than the corresponding energy of thihe upper branch toward the infinite period. This is the criti-
flat film. This branch represents the nucleation solutions thatal drop or hole discussed for the wetting transition in Refs.
have to be “overcome” if the film is to break into finite [45,46. Depending on the system size, the flat film and the
portions with sizep<<\.. This was checked by direct inte- lower periodic solution are absolutely stable and metastable
gration in time of Eq(7) for different initial finite sinusoidal or metastable and absolutely stable, respectively. Note that
disturbances. They shrink if their amplitude is smaller thenthe relative energy of the solution with the smallest period
the amplitude of the corresponding nucleation solution, and¢dhanges nonmonotonically with mean film thickness.
grow if it is larger. The existence of the nucleation solutions This analysis of the stationary solutions of Ed) may
may, however, also indicate that in this thickness range loimply that the distinction between the instability range and
calized finite disturbances of a lateral extension smaller thethe nucleation range of the film thickness generally used in
\. play a significant role in the evolution of the film. Al- the literature has to be modified to accommodate(ifpothe
though the energy of the lower branch decreases very rapidiystability range,(ii) the range of mixed behavior, ari)
with increasing period, there is a very small range of periodshe nucleation range.
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FIG. 8. Maximal wave number for nucleation solutions and the
linearly unstable mode for a flat film according to the value of the
mean film thickness =0.05.

To further characterize the three different ranges, in Fig. 8
we show the wave number ranges for linearly unstable flat
film modes and periodic nucleation solutions according to

the mean film thickneds. Thereby we define a wave number
for the periodic solutions in analogy to the wave number for
harmonic modes ak=2/p. From Fig. 8 one may think
that the separation betweén and (ii) is only due to finite

numerical accuracy. Figure 9, however, shows that it is a true I PSS S

transition, as the amplitude of the nucleation solution with lp—=20 .
the highest wave number goes to zero with a power law 0235 004 0245 095
when the film thickness approaches the border betwBen G

and (ii). This allows an unambiguous numerical identifica-
tion of this border for allG. The resulting diagram, showing FIG. 10. The three film thickness regimes due to different types
the ranges for instability, mixed behavior and nucleation, isf families of stationary solution(i), (ii) and (iii)], as defined in
plotted in Fig. 10. Note that the thickness at the border bethe main text, shown in the parameter plai@f). Dashed lines
tween instability and the mixed range does not diverge foseparate stable films from rangé), solid lines separate rangi )
G—0, and hence fo6~0 the prevailing range is the range from range(ii), and dotted lines separate rar(ge from range(i).
of mixed behavior. Shown is in(a) the full relevant parameter plane, and(n) a zoom
However, the study of types of solution families and theirclose to the critical point gt0.25,In(4). In (b) the thick lines show
energy does not reveal what will actually happen in thethe numerical values_ of the bprders as(?i), gnd the thin_lineg
physical system during the rupture process within the thick_represept the respective analytical approximations as obtained in the
ness range with mixed behavior. To clarify this issue, in the/PPendix.
following a linear stability analysis of the periodic solutions
and a direct time evolution are carried out, and the results are
compared.

V. STABILITY OF PERIODIC SOLUTIONS

Let us assess the linear stability of the periodic solutions
obtained in Sec. IV by linearizing the full time dependent
equation(7) around the periodic solutionkg(x). Taking for
the disturbance the ansdtgx) = hy(x) + eh,(x)e?" gives the
O(e) equation

Bh,= {[3q2(h0xfhh_ Noxxx) Ixt (qghOxfhhh)x}hl
+ [2q3h0xfhhh+ 3q2(2h0xfhh_ hOxxx)]hlx

+q3fhhh1xx_ 3q2h0xh1xxx_ qshlxxxx: (26)

maximal amplitude of nucleation solution

Pl i —t whereq=hy(x) —Ina and all derivatives of are functions
H of the periodic solutiorhy(x). For a disturbed flat film, Eq.
(26) reduces to Eq(15).
To solve Eq(26) numerically, we discretize it by express-

ing the derivatives oh4[i] at a pointi as a linear combina-

FIG. 9. Maximal amplitude of a nucleation solution according to
the value of the mean film thickness;=0.05.
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tion of hy[n] wherei —2=<n=<i+2. Using periodic bound-
ary conditions, this yields the algebraic eigenvalue problem
Bh1+ L(ho, oy, Noxx, Noxxxs Noxxx s Frans frnn) 1 =0, bl p
metastable
(27 0.6 p; stable
| 1 I/ | |
where L is a linear operator determined by the periodic so- 0 005 01 015 02 025
lution, hy. We search for the largest eigenvalyes., growth G
rates B, and the corresponding eigenvectbrs(i.e., distur- . ) .
bances FIG. 12. The different rupture regimes are shown within the

For a givenh we first calculate the linear growth rates of Parameter plane;h) for (@) h>he and (b) h<h; . The linearly
disturbances to the solutions of the terminating branch of"StaPlé range lying to the left of the solid line is divided by the
nucleation solutions in the mixed range), taking one pe- dot-dash_ed I|n_e_ in the_ nucleation-dominated subrange der_mted
. - . - ...._and the instability-dominated subrange dendBed he dotted line
riod of the respective solutions as the unit of the stability

. : . shows the location where the branch of nucleation solutions ceases
analysis. The obtained linear growth rates we compare to tht% exist

linear growth rates for the flat film modes at film thicknéss

obtained with Eq(15). Taking, for exampleG=0.05, Fig.  stability analysis, is shown in Fig. 18. The minimum

11 shows that the growth rate for the nucleation solutionyoints to the most stable solution, i.e., a solution that relaxes
depends nonmonotonically on its period. The maximum Ofaster than others to its stationary shape when perturbed.
this dispersion relation can be larger or smaller than theyote that its period is not correlated to the wavelength of the
maximum of the dispersion relation of the linear modes forfastest flat film mode. However, studying the linear stability
the corresponding flat film. This gives us evidence thalof the lower solution branch, taking multiples of the period
within the newly found mixed regime, depending on film of the stationary solution as unit for the stability analysis,
thickness, we encounter a generically different behavior inyives a positive growth rate for disturbances representing
the time evolution. However, before we further support thiscoarse graining. The growth rates for the case where the unit
statement by integrating the time evolution equation, we usgs twice the period of the analyzed solution are plotted in Fig.
this finding to delineate a separation between nucleationt3(h). The ongoing coarse graining leads to a long-time evo-

dominated and instability-dominated behavior within the lin-jution that goes toward solutions with larger period. We will
early unstable thickness range. We define this border to be abt dwell on this issue here.

the film thickness where the maximum growth rates of the
flat film mode, given by Eq(20), and that of the periodic
nucleation solution are equal as in Fig. 11. The numerically
calculated values are plotted in Figs.(d2and 12b), for Taking the linear stability results for the stationary solu-
h>h. andh<h,, respectively. tions in their exact mathematical sense, we can only state
We further confirm the stability of the lower solution that, for linearly unstable flat films, there exists a thickness
branch, upon which we already concluded by considering itsange—the nucleation-dominated range—where some peri-
energy. The always negative growth rate of disturbances, talodic finite perturbations corresponding to certain nucleation
ing one period of the stationary solution as the unit for thesolutions yield linear growth rates much larger than the lin-

VI. TIME EVOLUTION
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FIG. 13. Linear stability results for the lower branch of periodic 6 3
solutions for different at fixedG=0.05. The units for the stability x/A
analysis arg@ one period andb) two periods of the stationary m
solution. (b) shows their instability with respect to coarse graining.  F|G. 14. Short-time evolution for a localized disturbance with

. d=0.1 andw=0.2 at G=0.05. (a) Instability dominated ath
ear growth rate of the fastest flat film mode. However, we . . — i .

. . =2.4. (b) Nucleation dominated ah=3.2. The coordinate is
take this result only as a hint on the local structure of the

fl ah cl to th leati Iuti d h shown in units of the wavelength corresponding to the fastest grow-
oW, J¢ ’tﬁ c:s.e t?] esel nutc eadlon .Sotu Cljons an | enlc? V,\f[(ﬁwg linear mode\ ,,. Insets give the time in units of the growth
assume that In the nucleation-aominatea range, local Tini ?me 7= 1/8,, of the same mode.

perturbations of a lateral extension smaller than the critical
wavelength for flat film modes. have a crucial influence on (A) Nucleation-dominated regioThe initial disturbance
the structure formation, whereas they have a negligible rolgyows downward, forming a hole with rims at its two sides.
in the instability-dominated range. To show this we integraternis hole then expands laterally. Eventually, the thickness

10 12 14 16

(=]
[ 8]
N

the time dependent equatidi) for a system of siz@\n,  depressions at the outer bases of the rims lead to secondary
taking as an initial condition a flat film with a localized dis- pycleation events. An example of this type of evolution is
turbance, shown in Fig. 14b). The final, short-time structuréoefore

x |-2 coarse graining sets)is a set of holes with distances unre-
hinitzﬁ{l_d cos)‘( ) , (2g)  lated toh, [last picture of Fig. 1é)]. The details of the
WA, process and the resulting spatial structure depend strongly on
. - - . . . the width and depth of the initial disturbance, as can be seen
with periodic boundary conditionsi>1 is an integer\m iS i the Fourier spectra of a set of final structufEig. 15b)]
the wavelength of the fastest growing flat film modeltiod o in the evolution of the spatially averaged energy, resulting
is the maximum disturbance depth in unitshgfandw is a  in different values for the final short-time structystown in
measure of its width in terms of,,. Fig. 16b)]. Analogous differences are seen in the evolution
The results of the time evolution for many different initial of the spatially averaged second moment of the film thick-
disturbances and mean thicknesses permit one to sustain thess(not shown. Note that in the evolution of the energy
assumption given above, namely, the qualitative distinctiorone can clearly distinguish the individual secondary nucle-
of the two thickness regions within the linearly unstableation events, giving the process a steplike character. The in-
thickness range as introduced in Sec. V and shown imividual nucleation events seem to show power law behavior.
Fig. 12. Further simulations show that the secondary nucleation be-
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- ' ' ' ' ' ' ' ' 2] nearly identical, albeit slightly shifted in time. The approxi-
[h=2.4 ] mate linearity of these curves shows that the lateral extension
of the instability is a smooth process of constant velocity. In
7] contrast to(A), different perturbations result in the same en-
n ergy for the final short-time structure corresponding to the
s : 1 T ———p—— energy of the stationary solution of periqd,equal to to the
1 2z 3 4 3 wavelength of the fastest flat film mode,. The spatially
= ' ' ' ; b1 averaged second moment of the film thickness shows an
2r ’ 7 analogous behavior.
o [ The dramatic difference found in the time evolution con-
1- firms the above introduced separation in two experimentally
I distinguishable subranges—the nucleation-dominated sub-
0 . : L . L : range (A) and the instability-dominated subrand®)—
x/A within the linearly unstable range. Further simulations for a
m range of mean film thicknesses at different paramet&rs
FIG. 15. Fourier transforms of the final short-time, spatial pat-SNOW that the transition between the two subranges occurs
terns for (8 h=2.4 at timet/7,=17.2, and(b) h=3.2 at time rough_ly at thg dot-dashed line in F.|g. 12, as defln_ed in Sec.
t/7,=20.9. Both figures show results for a number of runs for V- B€iNg a bit apart from the transition line, the size of the
different depthsd=0.1 . . .0.4) and widths w=0.1 .. .0.4) of the  INitial disturbance has no influence arhich of the two sce-
initial disturbance folG=0.05. Thex axis is as in Fig. 14. nario occurs, but only orow it occurs. However, in the
transition region the size of the inital disturbance does
strongly influencewhich process occurs. This is due to the
fact that, in situations close to equal fastest linear growth
(B) Instability-dominated regianThe initial disturbance rates for flat film modes and periodic nucleation solutijas

starts to grow downwards as i) but from the beginning in Fig. 11(b)] only part of the periodic solutions grow faster
provokes the growth of undulations on its both sides. Thesthan the fastest flat film mode. Therefore, betwé&hand

undulations have the wavelength of the most unstable fla{®): depending on the depth and width of the initial distur-

film mode, and extend laterally with approximately constant?@1C€, one finds behavior corresponding(49 or (B) or
velocity. This process gives the impression of a grOWingcomblnatlons of structures caused by secondary nucleation

wave packet. An example is shown in Fig.(44 The final and growth of the fastest flat film mode. In the latter case the

short-time structure is a nearly periodic set of holes, whatdetails depend also on system size.
ever the width and depth of the initial perturbation may be,
as shown in the.Fourier spectra of a set of fingl structures in VII. DISCUSSION AND CONCLUSION
Fig. 15a). Studying the evolution of the enerdlig. 16a)],
we see that only the evolution at its very early stage depends We have analyzed the evolution of a thin liquid film under
on the details of the initial perturbation. Then the evolution isthe influence of the disjoining pressure that arises in the
combination of diffuse interface theory with thin film hydro-
dynamics[33]. First we determined the stable, metastable,
and linearly unstable thickness ranges according to the val-
ues of the control paramet&, and discussed the flat film
solutions, and bifurcations when parameters change values.
Then, we have obtained the families of stationary periodic
and localized solutions and have assessed their linear stabil-
ity. In the metastable film thickness range we identified pe-
riodic and localized nucleation solutions that separate decay-
ing and growing finite disturbances. A second branch
consists of periodic solutions that are linearly stable, taking
their periods as units for the stability analysis. However, they
are unstable if multiples of their period are taken as units for
the stability analysigcoarse graining

In the linearly unstable film thickness range we have dis-
tinguished two subranges showing qualitatively different be-

FIG. 16. Average energies subtracted from the correspondingpaviors: (A) a nucleation-dominated region an@) an
flat film energies are plotted for the short-time evolution@th  instability-dominated region. In the nucleation-dominated
=2.4 and(b) h=3.2. A number of runs is shown as in Fig. @hick ~ subrange initial small-scale finite disturbances are crucial for
lines, different linestyles The thin dotted lines represent the energy the final structure, and the linearly unstable flat film modes
for stationary solutions with period$a) p=\, and (b) p  are too slow to act. In the instability-dominated sub-range
=Ap,160,/11,16\,/10,16\,/9,16\,/8,18\ /7, and 16.,/6  the situation is the opposite. The fastest flat film wavelength
(from above. determines the structure formation, and finite disturbances

comes less important for mean film thicknesses closer to th
border of the linearly unstable range.

relative energy
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have negligible influence on the process. This was confirmedewetting. Our results merely shift the boundary between the
by a direct integration of the time evolution equaticn). two regimes. This explains why in Rf48] the transition
Despite the restriction to two-dimensional geometry, we bebetween their regime ll(spinodal holes or “less random
lieve this distinction is also valid for the more realistic three-nucleation” in their jargonand 1V (nucleated holes or “ran-
dimensional geometry. dom nucleation] seems to be already in the upper part of
The results obtained are also valid for other, formallythe spinodal regime. Note that their random droplet regime
similar disjoining pressures that describe short-range destdH) corresponds to our lower nucleation range. In the experi-
bilizing and long-range stabilizing interactions such as thements of Refs[4,9], the authors agreed in describing the
widely used pressure that combines destabilizing polar andituation as linearly unstable. On the one hand, the process is
stabilizing apolar molecular interactionisase IV in Refs. seen as spinodal dewetting based on the dependence of the
[26,28,30,31,3h and also used in Ref11,14)). Such a dis- hole density on the film thickne$d], and on the other hand
joining pressure can be accommodated in our theory by ret is seen as dewetting by nucleation based on the random
placing the unscaled functiof,f resulting from diffuse in- ~ distribution of the hole$9]. The ambiguity is eliminated if
terface theonfEq. (2)] with the negative of the disjoining We consider that the experiments were done with film thick-
pressure from Ref26] (case IV and introducing an adapted N€SSes that correspond to the nucleation-dominated subrange
scaling. Then calculations as performed here yield a similaithin the linearly unstable range with some disturbances
difference between nucleation-dominated and instabilityPresent that eventually determine the dewetting process. The
dominated subranges within the linearly unstable thicknes§pInOdaI Qewittlrlg COUI%??,I&/I be seer;_ '.rt‘ adsr?alllj thickness
range[36]. The results for this disjoining pressure comple- range, or in situations with lite or no finite disturbances or
. . defects in the film. Three-dimensional analyses of the dew-
ment Ref.[28] (case IV}, where they studied the time evo- . . A _
; L , ) i ! ) etting process, as done in Ref80,32 with initial condi-
lution of finite amplitude sinusoidal perturbations with wave- . .
. : tions like those used here in Sec. VI are expected to support
lengths larger than the critical wavelength of the linear flat . . L o .
. ) . . . “our view by studying the competing influence of finite dis-
film mode,\.. They compared this nonlinear time evolution . . e o
. X .~ _turbances and the linear instability of the flat film in a real-
to the extrapolated behavior of the corresponding linear_..
! istic geometry.
modes. In contrast, we focus on small scale disturbafuzes

fects with lateral extensions smaller th AlSO. We Com- The question of nucleation in the linearly unstable thick-
. an. ' . ness range was also raised in systems exhibiting spinodal
pare, on the one hand, only linear growth rates of flat film

modes and nucleation solutiofBig. 11, and on the other decomposition, where the thickness in our study is replaced
hand only the nonlinear evolution% of fi,nite disturbances an(lfy the concentration of one component. Different aspects
flat film r)rllodes(Figs 14-16. However, in addition to the discussed here were described for equations similar to our
gualitatively similar main result here and in R€f36], analytic limiting caseEq. (A7)]. In Refs.[38,39 the free

: ' energy has an additional cubic term, and HdD] uses a
namely,. t.h‘? existence of the sub(angA*/s and(B),_ the d'.f eneral quartic expression. Although their solutions are dif-
ferent disjoining pressures cause important details to differ

can best be seen by comparing the final parameter plane hefe%rent, certain general features are found in all the systems.
(Figs. 5 and 12 with Fig. 4 of Ref.[36]. Increasing the e study in Ref[38] of the stationary periodic concentra-

strength of the destabilizing short-range interaction in Reftlon profiles and their parameter dependence led to a quali-

[36] causes even very thick films to be only metastable an tive discrimination analogous to our distinction in three

not absolutely stable. Here, on the contrary, there exists w/ifferent families of solution), (ii), and(ii) in Sec. IV but
upper border for the metastable range forGit 0. In addi- ithout determining the boundary betweghand(ii). They

. . S A . identify the positive-energy branch within the metastable
t|o?, 'rlhRif' [36] for vgnls(jhlng Stta%'“tz)mg |n|ter{a_ct|o.n,d_thet range as periodic nucleation-type soluti¢88], and suggest
entire thickness range 1s dominated by nucieation InCicateq, ;"«ihe phase separation in the deep spinodal region, may
by the border betweeriA) and (B), approachingh=0, e distinguishable, perhaps more nearly periodic or ‘spin-
whereas here no such dramatical change occurs, the bordgga| ' than in the rest of the spinodal regiof89]. The latter
between(A) and (B) approaches a finite value ¢f as G corresponds to our distinction between instability-dominated
—0. The behavior in Refl36] is caused by the divergence and nucleation-dominated subranges within the linearly un-
of the disjoining pressure for vanishing film thickness. Ourstable thickness range.
results, especially the description of the families of periodic Referencg40] focused on the stability of periodic con-
nucleation solutions, can also be used to extend the findingsentration profiles to perturbations of equal period, aiming at
of single critical droplets and holes for first-order wetting a characterization of the short-time behavior of multilayer
transitions[45,4€ toward finite periods. systems. The authors found different solution types that cor-
Experimental systems with formally similar disjoining respond to the periodic nucleation solutions and stable peri-
pressures were investigated in Ref$4,48. The experi- odic solutions described here. They established concentration
ments of Refs[4,9,19 can also be discussed in our frame- (film thickness ranges for the absolute stability, metastabil-
work if one includes gravitation as a long-range stabilizingity, and linear instability of different solution types at fixed
interaction, competing with the destabilizing apolar interac-periods, comparing the energy of homogeneous solutions
tion (the limiting case of very smalB). In Refs.[14,48 the  (flat film) and periodic solutions. Their analysis corresponds
different patterns observed were explained by the distinctiomo part of our discussion of Fig. 7 in Sec. IV, especiallyiin
of thickness ranges for dewetting by nucleation and spinodadnd iii). From these analogies we conclude that the findings
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presented here can also account for phenomena occurring Wwhere the positive sign gives,,= Cs.

spinodal decomposition. In particular, the conjecture of a Looking for periodic solutions close to the lower instabil-
highly disturbance-dependent system behavior in a subregiaty line (related to drop solutionswe identify the constants
of the spinodal region in spinodal decomposit{89] can be  as follows: c, is the giveneni, C3= €max and c;<c, are
made precise using the quantitative description of thénterchanged with respect to above. The Jacobi elliptic func-
transition between nucleation-dominated and instabilitytion sfju,k] gives periodic solutions fok# 1. For k=(c,
dominated subranges within the linearly unstable thickness-c;)/(c;—c3)=1, it goes over to the homoclinic solution

range introduced here. given by Eq.(A2). The period of the solutions is given by
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APPENDIX A: ANALYTICAL SOLUTIONS CLOSE X|1-Bo—¢ Kie—c.l]: (A®
1 3 1 3

TO BIFURCATIONS

Close to the bifurcation lines one can approximately ob_whereK[k] and E[k] are the complete elliptic integrals of

tain the solutions analytically. These results are used to cros:[Qe first and second kinds, respectively.
check the numerical results. - )
2. Close to the critical point

1. Close to the linear instability line Close to the critical pointG.=1/4h.=In4), we intro-
duce hg=h.+u, h(xX)=h;,+e(x) and G=G.+g with
b(ﬂ)wO(e(x))~O(g)<1. We are interested in the range
of negative values ofl. Writing Eq. (13) to O(e%), thereby
taking into account thatd,f(h,)=C; and dp,f(he)
= dnnnf(he) =0 (see Sec. I, gives

The transition line between the metastable and the linearl
unstable film thickness range in th& (h) plane corresponds
to the crossing of two fixed points of E¢L3), as shown in
Fig. 3(b) for fixed G. The line in the phase plane is charac-
terized byd,,f(h) =0, allowing one to approximate E¢L3)
close to this line. We introduce the local variables=hj 0=dyye— 2 nnnif|n (= 1) —gle—p). (A7)

+ 1 andh=hg + e(x) wherehj is the film thickness on the ¢
bifurcation line andO(u)~O0(e(x))<1. Writing Eq.(13)to  Integrating Eq.(A7) twice yields the general periodic solu-

O(u?) gives tions
0= Jxx€= 3 Innnf [nx (62— 1?), (A1) 61— €,
€=¢€yr+ , (A8)
that can be integrated. The choice of the integration constant 1+a src(x—Xo) K]
C, permits one to obtain the homoclinic solutiorG,E 0) with
1 _ _ _
e=u| 3tanit E\//.Lfg(x_XO) —2) (A2) ae € 64’ _ (e2—€3)(€ep 64)’
€47 €2 (€1~ €3)(€2— €4)
or the periodic solutionfC,=3f3( €2 /3~ u?€mad] 1 R,
C:Z\/g(fl_fa)(fz_ﬂ), (A9)
— Gyt (Co—Cy)SIP Viseg—ca(x—xg) € Cg
T 2.3 "ci—C3’ and the period
(A3)
where sfu,k] is the Jacobi sine amplitude, afglstands for p= cKIK]. (A10)

&hhhf|h§. Close to the upper instability line in the phase

plane (related to hole solutions; is the minimal thickness €4 IS the value given at an e'xtremumzand the othee; are
€ins Cy iS the maximal thickness,,,,, andc;>c, has no  the roots of the cubic equatios?+d;e”+dye+d3=0 with

obvious physical meaning. Givem, .= C,, the othere, are ~ d1=€m, d2=129/f4+ep, and ds=ep—4u’+12gep/f,

given by —24gulf,, andf, stands fordnpnnf [, -
1 At e,=un and u=pu;=+—69g/f, the three remaining
a4 7 2 roots are fus,— i, — ms) and Eq.(A8) reduces to the het-
Cus=5 (= Co* V3\au*—cy), A4 eraclinic or front solution
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€= petant uwe(X—xo) ], (A11) €(X) =+ a(Arexp(ikx) + A exp(—ikx))

+ (A, exp(2ikx) + Aexp( — 2ikx))

that connects two flat filmg,,,= wt and €in=— w¢, Sym-
metric with h,. The relationu?+6g/f,=0 is also an ap- With @<1. This is valid for periodic solutions with wave
proximation close to the critical point for the border betweennumbersk close to the critical wave numbég, expressed
absolutely stable and metastable flat films. To obtain the loby k?=k2(1—ria?—r,a%. Introducing these relations in
cal approximation of the border between metastable and linEq. (A7) we project onto the modes exX{) and exp(&kx),
early unstable thickness ranges, we use the ansatz  Yielding two stationary amplitude equations for the. The
+dexp(kx) (5<w) in Eq. (A7) to obtain the relationu?  first order ina givesk,, the second order yields a relation
+2g/f,=0. betweenA; and A,, and the third order gives the relation

However, calculating the border between the purely spin¥1=A§S(,u,g), wheres is some function. At the border the
odal region(i) and the region where also periodic nucleationderivative of the wave number with respect to amplitude
solutions exist(ii) requires some more effort. We approxi- changes sign, i.er;=0. The resulting conditiors(u,Q)
mate the thickness profile for small amplitudes as =0 gives the border aerer 2gf,=0.

[1] H. S. Kheshgi and L. E. Scriven, Chem. Eng. S&, 519 [24] J. N. Israelachvili,intermolecular and Surface Force#\ca-

(1991). demic Press, London, 1992
[2] M. Mertig, U. Thiele, J. Bradt, D. Klemm, and W. Pompe, [25] V. M. Starov, Adv. Colloid Interface ScB9, 147 (1992.
Appl. Phys. A: Solids Sur6, S_565(1998. [26] A. Sharma, Langmui®, 861 (1993.
[3] F. Brochard-Wyart and J. Daillant, Can. J. Ph$8, 1084  [27] A. Sharma, J. Colloid Interface Scdi56, 96 (1993.
(1989. [28] A. Sharma and A. T. Jammel, J. Colloid Interface 36i1, 190
[4] G. Reiter, Phys. Rev. Let68, 75 (1992. (1993.
[5] E. Ruckenstein and R. Jain, J. Chem. Soc., Faraday Trans. 2q) o T. Jammel and A. Sharma, J. Colloid Interface 364, 416
70, 132(1974. (1994.

[S] (R:. KRha(ljnna, ﬁ' :hart:na(,jand Gt Rei;erF, E;Jd(if—‘%tl (5200- o [301 A Sharma and R. Khanna, Phys. Rev. L8t 3463(1998.
L ]Létt 260'71'15 ('19;‘;; ard-Wyart, and F. Rondelez, Phys. ReVi311 o sharma and R. Khanna, J. Chem. PHik0, 4929(1999.
[8] K. Jacobs, R. Seemann, G. Schatz, and S. Herminghaus, Langz] A OrorT, Phys. Rev. LetB5, 2108(2000.

3] L. M. Pismen and Y. Pomeau, Phys. Rev6E 2480(2000.

muir 14, 4961(1998. 34]P. G. de G d. Ph

[9] K. Jacobs, S. Herminghaus, and K. R. Mecke, Langndir [34] P. G. de Gennes, Rev. o PO 527 (1989,
665 (1908 [35] A. Sharma, Langmui®, 3580(1993.

[10] V. S. Mitlin, J. Colloid Interface Sci233 153 (2001. [36] 0. Thiele, M. G. Velarde, and K. Neuffer, Phys. Rev. L&T.

[11] N. Samid-Merzel, S. Lipson, and D. S. Tannhauser, Phys. Rev. 016104(2001).

E 57, 2906(1998. [37] J. Langer, Ann. PhygN.Y.) 65, 53 (1971).

[12] J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, Phyd38] A. Novick-Cohen and L. A. Segel, PhysicaID, 277 (1984.
Rev. Lett. 77, 1536(1996. [39] A. Novick-Cohen, J. Stat. Phy88, 707 (1985.

[13] R. Xie, A. Karim, J. Douglas, C. Han, and R. Weiss, Phys. Rev[40] M. Hentschel, M. Bobeth, G. Diener, and W. Pompe, Thin
Lett. 81, 1251(1998. Solid Films 354, 267 (1999.

[14] U. Thiele, M. Mertig, and W. Pompe, Phys. Rev. L&®, 2869  [41] A. Sharma and E. Ruckenstein, J. Colloid Interface $t8
(1998. 456 (1986.

[15] G. Reiter, A. Sharma, A. Casoli, M.-O. David, R. Khanna, and[42] A. Oron and P. Rosenau, J. Phys2]1361(1992.
P. Auroy, Langmuirl5, 2551(1999. [43] V. S. Mitlin, J. Colloid Interface Sci227, 371(2000.

[16] G. Reiter, Langmui®, 1344(1993. [44] hy, contains noO(1) term, as can be seen in the next order

[17] A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Ph§8. approximation, givingh®,= \/G/2(1+ 3v2\/G)+0(G*? and
931 (1997). h' = 2/G — (\2/16)\G + Z5G + O(G%?).

[18] J. W. Cahn and J. W. Hillard, J. Chem. Phg8, 258 (1958. [45] R. Bausch and R. Blossey, Phys. Rev& 1131(1993.

[19] V. S. Mitlin, J. Colloid Interface Scil56, 491 (1993. [46] R. Bausch, R. Blossey, and M. Burschka, J. Phy&7A1405

[20] B. V. Derjaguin, Zh. Fiz. Khim14, 137 (1940. (1994.

[21] B. V. Derjaguin, N. V. Churaev, and V. M. MulleSurface  [47] E. Doedel, A. Champneys, T. Fairfrieve, Y. Kuznetsov, B.
Forces(Consultants Bureau, New York, 1987 Sandstede, and X. WanglUTO97: Continuation and Bifurca-

[22] G. F. Teletzke, H. T. Davis, and L. E. Scriven, Rev. Phys. Appl. tion Software for Ordinary Differential Equationgoncordia
23, 989(1988. University Press, Montreal, 1987

[23] R. J. HunterFoundation of Colloid ScienceéClarendon Press, [48] H. I. Kim, C. M. Mate, K. A. Hannibal, and S. S. Perry, Phys.
Oxford, 1992, Vol. 1. Rev. Lett.82, 3496(1999.

031602-14



